
Parallel Computations in *-Semirings

S. Kamal Abdali∗

Division of Computer and Computation Research

National Science Foundation

Arlington, VA 22230

Abstract

*-semirings are algebraic structures that provide a unified approach to several problem classes
in computer science and operations research. For example, *-semirings can be used to describe
the algebra related to regular expressions, graph-theoretical path problems, and compiled-code
optimization. The theory of matrices over *-semirings has a number of similarities to linear
algebra. For example, eliminants and asterates (closures) behave analogously in many ways
to determinants and matrix inverses. Matrix computations over *-semirings are interesting
in their own right as well as because of their potential applications to linear algebra. This
paper uses the eliminant formulation of *-semiring properties to derive parallel algorithms for
three kinds of problems involving matrices over *-semirings: eliminant computation, solution of
linear systems over *-semirings, and matrix asteration. The algorithms discussed allow the most
general computations in which the asteration operation in the base *-semiring is assumed to be
non-trivial, and the matrices are assumed to be dense and without any particular structure.

1 Introduction

*-semirings (also called closed semirings) are algebraic structures that provide a unified approach
to a number of problems in computer science and operations research. Examples of such problems
include finding shortest or most reliable paths in graphs, finding maximum network flows, cutset
enumeration, computing the transitive closure of binary relations, finding the regular expression
to describe the language accepted by a finite automaton, solving systems of linear equations, etc.
The reader is referred to Conway[6], Carré[2], Tarjan[13], and Gondran & Minoux[8] for some of
the most notable formulations of the *-semiring approach to these and other problems; the last
reference also contains an extensive bibliography.

A large number of parallel and systolic algorithms have been published for matrix computations,
path algebra, and other related problems (see, e.g., [3, 4, 5, 7, 10, 11, 12, 14]). Most of these
computations belong to specialized *-semirings, and the algorithms exploit their special properties
to attain high efficiencies. Several matrix computation algorithms are meant for sparse or specially

∗The opinions expressed in this paper belong to the author, and should not be construed as the official viewpoint
of the National Science Foundation.

1



structured matrices, and take advantage of these features for efficiency. The fact that in linear
algebra the base *-semiring is actually a field is sometimes a source of algorithm acceleration. For
example, then one can use fast matrix multiplication for obtaining fast algorithms for many other
matrix computations. In the case of several path problems, the asteration (closure, star operation)
of matrices is made significantly simpler because the asteration of base elements is trivial.

This paper discusses parallel computations over general *-semirings, involving dense, unstructured
matrices. The concept of eliminant was introduced in a previous work[1] to give closed form
expressions for matrix asterates and for describing solutions of linear systems of equations in a
form reminiscent of Cramer’s rule. Here we use the same eliminant formulation to obtain very
simple parallel algorithms for these computations.

2 Basic Definitions and Properties

We summarize here the necessary definitions needed in this paper, referring the reader to [1] for
details of the eliminant approach to *-semiring properties. A *-semiring is an algebraic structure
consisting of a set together with two binary operations addition (denoted, +) and multiplication
(denoted ·, or by juxtaposition), a unary operation asteration1 (denoted ∗), and two distinguished
elements 0 and 1. Addition is associative and commutative, and has 0 as its identity element
(a+0 = 0+a = a). Multiplication is associative, has 1 as its identity element (a1 = 1a = a), has 0
as zero (a0 = 0a = 0), and is left and right distributive over addition. Asteration satisfies the law
a∗ = aa∗ + 1 = a∗a + 1. The structure is closed with respect to addition and multiplication, but
may not be closed with respect to asteration. In particular, 1∗ need not be defined.

For a fixed positive integer n, the set of n × n matrices over a *-semiring S can itself be made a
*-semiring Sn as follows: The zero of Sn is the matrix consisting entirely of zeros of S. The 1 of Sn

is the identity matrix I with 1’s along the principal diagonal, and 0’s elsewhere. The addition and
multiplication in Sn are defined in the usual way. Matrix asteration is defined in different ways in
the literature. Here we pursue the approach of [1] to define asterates in terms of eliminants. With
each square array of elements of a *-semirings, we associate a value in the *-semiring, and call this
value the eliminant (of that array). We denote the eliminant of a square array by enclosing the
array between braces ({})2 or by elim(A) if the array has been given as a square matrix A. An

1Asteration is often called closure or star. The term asterate of a for a
∗ is found in [6].

2In [1], the notation for eliminants was the same as for determinants, since the two concepts have many similarities.
The notation has been changed to avoid any possible confusion.

2



eliminant is evaluated as follows:

{a} = a,










a b

c d











= d + ca∗b,



















































a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n

...
...

...
...

an1 an2 an3 . . . ann



















































=

























































































a11 a12

a21 a22





















a11 a13

a21 a23











. . .











a11 a1n

a21 a2n





















a11 a12

a31 a32





















a11 a13

a31 a33











. . .











a11 a1n

a31 a3n











...
...

...










a11 a12

an1 an2





















a11 a13

an1 an3











. . .











a11 a1n

an1 ann

























































































, n > 2.

Example























a b c

d e f

g h i























=

















































a b

d e





















a c

d f





















a b

g h





















a c

g i

















































=











e + da∗b f + da∗c

h + ga∗b i + ga∗c











= i + ga∗c + (h + ga∗b)(e + da∗b)∗(f + da∗c).

Asteration can now be defined in terms of eliminants. Given a matrix of order n, its asterate is a
matrix, also of order n, each of whose elements is an eliminant of order n + 1 whose elements, in
turn, are those of the given matrix augmented with a row and a column of appropriately chosen
1’s and 0’s, as follows. Suppose

A =







a11 . . . a1n

...
...

an1 . . . ann






.

Then A∗ is the matrix B whose generic element bij , i = 1, . . . , n, j = 1, . . . , n, is given by:

bij =































































a11 . . . a1,i−1 a1i a1,i+1 . . . a1n 0
...

...
...

...
...

...
aj−1,1 . . . aj−1,i−1 aj−1,i aj−1,i+1 . . . aj−1,n 0
aj,1 . . . aj,i−1 aj,i aj,i+1 . . . aj,n 1

aj+1,1 . . . aj+1,i−1 aj+1,i aj+1,i+1 . . . aj+1,n 0
...

...
...

...
...

...
an1 . . . an,i−1 ani an,i+1 . . . ann 0
0 . . . 0 1 0 . . . 0 0































































.

Note that the above eliminant is obtained by bordering A one deep at right and bottom; the
bordering elements are all zero, except for 1’s in row j and column i. Alternatively, the augmented
row (resp., column) is the ith row (resp., the jth column) of the identity matrix I.

3



It is proved in [1] that A∗ = AA∗ + I = A∗A + I, so that the above definition of asteration is
justified.

The references cited in the introduction contain many examples of *-semirings. Also, any field can
be made into a *-semiring by defining a∗ = 1/(1−a) for all a 6= 1. For several network problems, the
asteration operation, which is of crucial importance for matrices over the appropriate *-semiring,
is either not needed or is trivial for the base *-semiring itself. (For example, a∗ might be 1 for all
a). *-semirings with non-trivial asteration include the algebra of regular expressions and the field
of reals made into a *-semiring as above.

From the law that asterates satisfy, it is clear that a∗ is a solution3 of the equation x = ax + b. It
is convenient to express systems of linear equations in n unknowns x1, x2, . . . , xn in the form

x1 = a11x1 + a12x2 + · · · + a1nxn + b1,
x2 = a21x1 + a22x2 + · · · + a2nxn + b2,

...
xn = an1x1 + an2x2 + · · · + annxn + bn,

It is shown in [1] that a solution of this system is given by

xi =























a11 . . . a1,i−1 a1i a1,i+1 . . . a1n b1
...

...
...

...
...

...
an1 . . . an,i−1 ani an,i+1 . . . ann bn

0 . . . 0 1 0 . . . 0 0























, i = 1, . . . , n.

Since *-semiring multiplication is not necessarily commutative, there is also a “right-handed” system
of equations:

x1 = x1a11 + x2a12 + · · · + xna1n + b1,
x2 = x1a21 + x2a22 + · · · + xna2n + b2,

...
xn = x1an1 + x2an2 + · · · + xnann + bn,

A solution of this system is given by:

xi =































































a11 . . . a1n 0
...

...
...

ai−1,1 . . . ai−1,n 0
ai1 . . . ain 1

ai+1,1 . . . ai+1,n 0
...

...
...

an1 . . . ann 0
b1 . . . bn 0































































, i = 1, . . . , n.

Here is another property of eliminants. Let a square matrix M be decomposed in four blocks

M =

[

A B
C D

]

3Note the use of “a solution” here instead of “the solution”. For a general *-semiring, other conditions may be
needed to restrict the solution. One may, for example, seek the least solution in some sense.

4



subject to the condition that A and D are square blocks. Then we have

elim(M) = elim(D + CA∗B).

This is reminiscent of the well-known linear algebra relation

det(M) = det(A) det(D − CA−1B).

3 Parallel Computation Models

We assume that our computations are done in the Parallel Random Access Machine (PRAM)
model (see, e.g., [9]) in which all processors have access to a globally shared memory. Depending
on the processors’ access mode (concurrent or exclusive) to the memory locations for read and
write operations, PRAMs are said to be of the CRCW, CREW, ERCW or EREW variety. It
turns out that in the algorithms to be presented here the values of some data items will be used
simultaneously by several processors, but a data item will be modified, if at all, by only a single
processors. Thus the processing can be done equivalently in the CRCW or CREW mode.

We further assume that a 2× 2 eliminant, that is, an expression of the form d + ca∗b, is computed
in a single unit of time.

4 Computation of Eliminants

The definition of eliminant given in Section 2 is by an evaluation procedure which itself can be
thought of as a very simple parallel algorithm. Given an eliminant of order n > 2, one obtains
equivalent eliminants of successively smaller orders stopping when a single quantity, the value of
the eliminant, is reached. Let a given eliminant of order n > 2 be

A =































a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n

...
...

...
...

an1 an2 an3 . . . ann































.

A has the same value as the order n − 1 eliminant

B =























b11 b12 . . . b1,n−1

b21 b22 . . . b2,n−1
...

...
...

bn−1,1 bn−1,2 . . . bn−1,n−1























,

where

bij =

{

a11 a1,j−1

ai−1,1 ai−1,j−1

}

= ai−1,j−1 + ai−1,1(a11)
∗a1,j−1, for2 ≤ i, j ≤ n.

5



The element bij can be computed in one time unit according to our assumption. Thus (n −
1)2 processors can compute all elements of B in a single time unit. The computation requires
simultaneous access by all processors to the elements belonging to the first row or column of A. On
the other hand, each element of B is modified by a separate processor. Thus the processing can be
done equivalently in the CRCW or CREW mode.

In successive steps, eliminants of order n − 2, n − 3, . . . , 3, 2 are generated in the same way, each
requiring a single time unit by (n − 2)2, (n − 3)2, . . . , 9, 4 processors, respectively. Finally, in a
single time unit, a single processor replaces the last eliminant by an explicit value. Thus an n × n
eliminant can be computed in parallel by (n − 1)2 processors in time n − 1.

For use in the algorithms in the next two sections, the eliminant computation is performed in
place as follows. The first step replaces all elements not belonging to either the first row or the
first column; the second step replaces all elements not belonging to the first two rows or columns;
and so on. The (n − 1)st step replaces the bottom right corner element which then contains the
eliminant’s value. A schematic representation of this computation for the case n = 4 is shown
below. The values to be replaced are shown in bold face. The values to be used but not modified
are in the row and the column just above the values to be replaced, and are surrounded by single
lines.

x x x x
x x x x

x x x x

x x x x

⇒

x x x x
x y y y
x y y y

x y y y

⇒

x x x x
x y y y
x y z z
x y z z

⇒

x x x x
x y y y
x y y y
x y z w

In [1], the following property of eliminants is proved. Given an n × n matrix A and an integer r
such that 1 ≤ r < n. Let B be the (n−r)×(n−r) matrix whose (i, j)th element is a (r+1)×(r+1)
eliminant whose elements consists of the r × r principal minor of A augmented with the (r + i)th
row of A and the (r + j)th column of A. In symbols,

bij =























a11 . . . a1r a1,r+j

...
...

...
ar1 . . . arr ar,r+j

ar+i,1 . . . ar+i,r ar+i,,r+j























.

Then elim(A) = elim(B). (Note that the case r = 1 of this property agrees with the evaluation
rule in the definition of eliminants.)

Although it appears that one might obtain a faster algorithm by using this property (since each
step could reduce the eliminant order by more than one), there seems to be no improvement over
the algorithm just described. To see this, let E(n) be the parallel time needed to evaluate an n×n
eliminant. We have assumed that a processor computes a 2 × 2 eliminant in one time unit, that
is, E(2) = 1. For any n > 2 and any choice of r, we can compute all bij’s in parallel, and then
compute the eliminant B itself. B is of order n − r and each bij is of order r + 1. Hence we have

E(n) = min
1≤r≤n−2

E(r + 1) + E(n − r).

It turns out that the best choice for r is 1 and the best value of E(n) is n−1, with at most (n−1)2

processors needed at any step.

6



5 Solution of Linear Systems of Equations

Suppose we are given the following system of n equations in n unknowns x1, x2, . . . , xn:

x1 = a11x1 + a12x2 + · · · + a1nxn + b1,
x2 = a21x1 + a22x2 + · · · + a2nxn + b2,

...
xn = an1x1 + an2x2 + · · · + annxn + bn.

The solution of this equation is given by

xi =























a11 . . . a1,i−1 a1i a1,i+1 . . . a1n b1
...

...
...

...
...

...
an1 . . . an,i−1 ani an,i+1 . . . ann bn

0 . . . 0 1 0 . . . 0 0























, i = 1, . . . , n.

To solve the system, we need the values of n eliminants of order n+1 each. Since each of these can
be computed using n2 processors in n time units, their simultaneous, independent computation is
possible using n3 processors. Considerable reduction in the number of required processors can be
achieved, however, by exploiting common subcomputations, since the n eliminants have identical
elements except in their last rows. Moreover, these differing last rows have a very simple structure.
To compute all of them in parallel, we organize the data in a single array of 2n rows and n + 1
columns, as follows:

a11 a12 . . . a1n b1

a21 a22 . . . a2n b2
...

...
...

...
an1 an2 . . . ann bn

1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
0 0 . . . 1 0

This array contains all the elements of the n eliminants of order n + 1 that we want to compute.
The n rows in the top half of this array are common to all these eliminants, while each row in
the bottom half of the array constitutes the last row of a different eliminant. The n eliminants
can be computed by starting with this array and successively replacing its selected elements by the
values of appropriate 2× 2 eliminants. The first step replaces all elements in this array except the
ones belonging to the first row or the first column; the second step replaces all elements except the
ones belonging to the first two rows or the first two columns; and so on. The nth step replaces
all elements except the ones belonging to the first n rows or the first n columns. Thus this step
replaces only the n elements in the bottom half of the last column. Each of these elements is the
bottom right element of a different eliminant, and attains precisely the value of this eliminant when
the nth step is complete.

Let us denote by m
(k)
ij the value of the element in row i and column j of this array after the kth

step, (m
(0)
ij denote the array’s initial values a’s, b’s, 0’s and 1’s as shown in the diagram above). The

7



first step uses but does not modify the elements in the first row or the first column, and replaces
the remaining elements, for i = 2, . . . , 2n, j = 2, . . . , n + 1, as follows:

m
(1)
ij = m

(0)
ij + m

(0)
i1 (m

(0)
11 )∗m

(0)
1j .

On the surface, this involves computing (2n− 1)×n new values. It turns out, however, that in the

lower half of the array only the first row can change, because we have m
(0)
i1 = 0 for i = n+2, . . . , 2n,

so that m
(1)
ij = m

(0)
ij . Thus, in the first step, we need replace only the n2 elements that lie in the n

rows and n columns 2 ≤ i, j ≤ n+1. These elements can be computed in parallel by n2 processors.
Each processor needs to modify a single, separate element. But all processors need simultaneous
access to the values in the first row and column which are themselves not modified. Hence both
CREW and CRCW modes are acceptable for this computation.

The change in the above array resulting from the first step is schematically depicted below. The
values not known to be 0 or 1 are represented by the symbol x. The elements shown in bold face
are the only ones to be replaced. The second rectangle represents the state after the first step, and
does not show the elements in the first row or column of the original array since these elements do
not participate in any future computation.

x x x x x
x x x x x

x x x x x

x x x x x

1 0 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⇒

x x x x
x x x x
x x x x
x x x x
1 0 0 0
0 1 0 0
0 0 1 0

In the second step, we need to compute new values of the elements in the last 2n − 2 rows and
n − 1 columns, by using the rule

m
(2)
ij = m

(1)
ij + m

(1)
i2 (m

(1)
22 )∗m

(1)
2j ,

for i = 3, . . . , 2n, j = 3, . . . , n + 1. But notice that the first step leaves the array with the pattern
of 1’s and 0’s similar to the one before. So in the second step, the elements in the bottom n − 2
rows retain their values, and only the n× (n− 1) elements belonging to the n rows 3 through n + 2
and the last n− 1 columns need to be replaced. These can be computed in parallel by n× (n − 1)
processors.

In general, the kth step has to compute the values

m
(k)
ij = m

(k−1)
ij + m

(k−1)
ik (m

(k−1)
kk )∗m

(k−1)
kj ,

for i = k + 1, . . . , 2n, j = k + 1, . . . , n + 1. But it follows by a simple induction that for i =

n+k+1, . . . , 2n, j = k+1, . . . , n+1, m
(k)
ij = m

(k−1)
ij (each is either 0 or 1). So the above computation

need be done only for the n rows i = k + 1, . . . , n + k and n− k columns j = k + 1, . . . , n + 1. This
can be done in parallel using n × (n − k) processors.

8



A schematic representation of the entire computation for the case n = 4 is shown below. The
values not known to be 0 or 1 are represented by the symbol x. The elements in the top row or left
column are used but not themselves modified in the current step, and are not used in succeeding
steps. Hence these elements are not shown in subsequent steps. The elements shown in bold face
are the only ones needed to be replaced in any step.

x x x x x
x x x x x

x x x x x

x x x x x

1 0 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⇒

x x x x
x x x x

x x x x

x x x x

1 0 0 0

0 1 0 0
0 0 1 0

⇒

x x x
x x x

x x x

x x x

1 0 0

0 1 0

⇒
x x
x x

x x

x x

1 0

⇒
x
x
x
x

The entire computation, requiring successive evaluation of blocks of n2, (n−1)n, . . . , 2n, n eliminants
of order 2 for a total of n2(n + 1)/2 of these quantities, can be diagrammed as follows:

n n − 1 n − 2 · · · 3 2 1

n

The quantities in each block depend on the ones in the previous one. Hence the number of steps to
compute this sequence of quantities cannot be smaller than n. The maximum number of processors
usefully engaged is n2, in the first step. Later steps utilize successively fewer processors. Hence,
a system of n linear equations can be solved in time n using n2 processors. The above diagram
makes it obvious how to schedule a smaller number of processors. The main constraint is that the
previous blocks of evaluations be complete before getting into the next one. For example, if only
n processors are available, they can be scheduled to compute one column of the above diagram in
each step, requiring a total of n + (n − 1) + · · · + 2 + 1 = n(n + 1)/2 steps. In general, with kn
processors, for some 1 ≤ k ≤ n, the solution requires between n and n(n + 1)/2 steps.

The parallel solution of the “right-handed” system of n equations in n unknowns is very similar,
and can be obtained in time n with n2 processors.

9



6 Asteration or Reflexive Transitive Closure

Suppose we are given the following n × n matrix to asterate:

A =







a11 . . . a1n

...
...

an1 . . . ann






.

Then A∗ is the n × n matrix B whose element bij , i = 1, . . . , n, j = 1, . . . , n, is given by:

bij =































































a11 . . . a1,i−1 a1i a1,i+1 . . . a1n 0
...

...
...

...
...

...
aj−1,1 . . . aj−1,i−1 aj−1,i aj−1,i+1 . . . aj−1,n 0
aj,1 . . . aj,i−1 aj,i aj,i+1 . . . aj,n 1

aj+1,1 . . . aj+1,i−1 aj+1,i aj+1,i+1 . . . aj+1,n 0
...

...
...

...
...

...
an1 . . . an,i−1 ani an,i+1 . . . ann 0
0 . . . 0 1 0 . . . 0 0































































.

To compute A∗, we need to compute these n2 eliminants of order n+1 each. It is, of course, possible
to compute all these eliminants in parallel in time n by using a separate set of n2 processors for each
eliminant, requiring a total of n4 processors. But these elements differ only in their last rows and
columns which themsleves consist entirely of 0’s and a single 1. Just as we exploited this feature of
the eliminants to reduce the number of processors in solving linear systems , we will show that the
asteration can also be performed in time n on n2 processors. For this, we combine the elements of
all the eliminants into a single 2n × 2n rectangular array as follows:

a11 a12 . . . a1n 1 0 . . . 0
a21 a22 . . . a2n 0 1 . . . 0
...

...
...

...
...

...
an1 an2 . . . ann 0 0 . . . 1

1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
...

...
...

...
0 0 . . . 1 0 0 . . . 0

The upper left quarter of this array contains the first n rows and columns common to all the n2

eleminants. The upper right quarter contains one column from each eliminant. The lower left
quarter contains one row from each eliminant. Finally, the lower right quarter contains the zeros
that belong to the bottom right diagonal positions of the eliminants.

The n2 eliminants are computed by starting with this array and successively replacing its selected
elements by the values of appropriate 2 × 2 eliminants. The first step replaces all elements in
this array except the ones belonging to the first row or the first column; the second step replaces
all elements except the ones belonging to the first two rows or the first two columns; and so on.

10



The nth step replaces all elements except the ones belonging to the first n rows or the first n
columns. Thus this step replaces only the n2 elements in the lower right quarter of the. Each of
these elements is the bottom right element of a different eliminant, and attains precisely the value
of this eliminant when the nth step is complete. The lower right quarter of the array thus ends up
with the elements of A∗, in the correct order of row and columns.

The style of computation is similar to the one used in the solution of linear systems, and hence will

be described in less detail than in the previous section. We denote by m
(k)
ij the value of the element

in row i and column j of this array after the kth step. Initially, the array elements have the values
given by

m
(0)
ij =



















aij, 1 ≤ i, j ≤ n,
0, n + 1 ≤ i, j ≤ 2n,
δi,n−j, 1 ≤ i ≤ n, n + 1 ≤ j ≤ 2n,
δn−i,j, n + 1 ≤ i ≤ 2n, 1 ≤ j ≤ n.

as shown in the diagram above. (δrs is 1 for r = s, 0 otherwise.) In the kth step, all elements of
the array not belonging to the first k rows and columns are replaced as follows:

m
(k)
ij = m

(k−1)
ij + m

(k−1)
ik (m

(k−1)
kk )∗m

(k−1)
kj ,

for i = k + 1, . . . , 2n, j = k + 1, . . . , 2n. This seems to involve the computation of (2n − k)2

quantities in the kth step, k = 1, . . . , n. But it turns out, as can be proved by a simple induction,

that m
(k)
ij = m

(k−1)
ij (each is either 0 or 1) for i, j = n+k +1, . . . , 2n. Hence the above computation

needs to be done only for i, j = k+1, . . . , n+k, and can be accomplished in parallel by n2 processors
in unit time.

A schematic representation of the entire computation for the case n = 4 is shown below. The
values not known to be 0 or 1 are represented by the symbol x. The elements in the top row or left
column are used in evaluating the elements to be replaced, but are not affected by the current or
subsequent steps, and are, therefore, not shown in subsequent steps. The elements shown in bold
face are the only ones needed to be replaced in any step.

x x x x 1 0 0 0
x x x x 0 1 0 0
x x x x 0 0 1 0
x x x x 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⇒

x x x x 1 0 0
x x x x 0 1 0
x x x x 0 0 1
x x x x 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

⇒

x x x x 1 0
x x x x 0 1
x x x x 0 0
x x x x 0 0
1 0 0 x 0 0
0 1 0 0 0 0

⇒
x x x x 1
x x x x 0

x x x x 0

x x x x 0

1 0 0 0 0

⇒
x x x x
x x x x
x x x x
x x x x

11



The computation, requiring n blocks of n2 eliminants of order 2 for a total of n3 of these quantities,
can be diagrammed as follows:

n n n · · · n n

n

The quantities in each block depend on the ones in the previous one. Hence the number of steps to
compute this sequence of quantities cannot be smaller than n. Using n2 processors, the quantities
in each block can be computed in parallel in a single step, and the whole computation can be
performed in exactly n steps, with no idling of processors. If the number of processors available
is less than n2, they have to be scheduled so that each block of computations is completed before
beginning another. Within a block, of course, the computation can be performed in any order.
With n2/r processors where r is an integer divisor of n2, the computation can be done in rn steps
with no idling. In general, with kn processors, for some 1 ≤ k ≤ n, asteration requires between n
and n2 steps.

7 Conclusion

Parallel algorithms have been presented for matrix computations over *-semirings. The evaluation
of an n× n eliminant, solution of linear systems of n equations over *-semirings, and asteration of
an n×n matrix each are done in time n with n2 processors under the CREW PRAM model. Karp
and Ramachandran[9] call a parallel algorithm efficient if the time taken is a polylog function (of
the problem size) and the product of the time taken and the processors used is within a polylog
factor of the best sequential time algorithm for the same problem. Our algorithms are not efficient
in that sense. The best sequential time for the general *-semiring asteration is O(n3). Hence an
algorithm would be considered efficient if, for example, it could asterate in time O(log n) while
using O(n3) processors. Of course, even the sequential algorithms known for the general *-semiring
tend to be slower than the ones for “similar” problems in linear algebra and path algebras.

A difficulty is that several key properties of special *-semirings which have been exploited for
devising fast algorithms are not known to hold in the general *-semiring. As an example, matrix
computations can sometimes be made faster if the computed quantity can be expressed as a finite
linear combination of the powers of the matrix. This is true for the reflexive transitive closure
problem of Boolean matrices as well as for matrix inversion in linear algebra. Specifically, for an
n × n Boolean matrix A, we know that

A∗ = I + A + A2 + A3 + · · · + Am = (I + A)m, for all m ≥ n − 1.

This linear combination be computed by matrix squaring log n times. The inverse of an n × n
matrix over a field is expressible by Cayley-Hamilton theorem as

A−1 = p0I + p1A + p2A
2 + · · · + pn−1A

n−1,

12



where p’s are related to the coefficients of the characteristic equation of A. This linear combination
was utilized by Csanky[5] in the earliest fast parallel matrix inversion algorithm. An analog of
the Cayley-Hamilton theorem or some other formula expressing matrix asterates as a finite linear
combination of matrix powers is not known for the general *-semiring. It seems that more algebraic
research on *-semirings is necessary before better algorithms can be expected.

References

[1] S. K. Abdali and B. D. Saunders, “Transitive closure and related semiring properties via
eliminants,” Theoretical Computer Science, 40, 257–274, 1985.

[2] B. A. Carré, Graphs and Networks, Clarendon Press, Oxford, 1979.

[3] G.-H. Chen, B.-F. Wang, and C.-J. Lu, “On the parallel computation of the algebraic path
problem,” IEEE Trans. Parallel and Distributed Systems, 3, No. 3, 251–256, March 1992.

[4] P. Comon and Y. Robert, “A systolic array for computing BA−1,” IEEE Trans. Accoustics,
Speech, and Signal Processing, ASSP-35, No. 6, 717–723, June 1987.

[5] L. Csanky, “Fast parallel matrix inversion algorithms,” SIAM J Computing, 5, 618–623, 1976.

[6] J.H. Conway, Regular Algebra and Finite Machines, Chapman & Hall, London, 1971.

[7] G. N. Frederickson, “Fast algorithms for shortest paths in planar graphs, with applications,”
SIAM J Computing, 16, No. 6, 1004–1022, 1987.

[8] M. Gondran and M. Minoux, Graphs and Algorithms, Wiley, New York, 1984.

[9] R. M. Karp and V. Ramachandran, “Parallel algorithms for shared-memory machines,” in
Handbook of Theoretical Computer Science, Algorithms and Complexity (Volume A), ed. J.
van Leeuwen, North Holland, Amsterdam, 869–941, 1990.

[10] A. Moffat and T. Takaoka, “An all pairs shortest path algorithm with expected time
O(n2 log n),” SIAM J Computing, 16, No. 6, 1023–1031, 1987.

[11] V. Pan and J. Reif, “Fast and efficient solution of path algebra problems,” JCSS, 38, No. 3,
494–510, June 1989.

[12] T. Risset and Y. Robert, “Synthesis of processor arrays for the algebraic path problem: unify-
ing old results and deriving new architectures,” Report 91-16, Labo. de l’info. du parallélisme,
Ecole Normale Supérieure, Lyon, France, May 1991.

[13] R. E. Tarjan, “A unified approach to path problems,” JACM, 28, No. 3, 500–507, Oct. 1981.

[14] O. Wing and J. H. Huang, “A computation model of parallel solution of linear equations,”
IEEE Trans. Computers, 29, No. 7, 632–638, July 1980.

13


