(Description of Algorithm 392 continued from p. §68.)
The correct values for the apex are
X =16144; Y = 1.1580;
U =9.2057; V = 4.0312,

Using 81 datum points on the initial curve but not applying extrap-
olation, the computed values were

X =1.5889; Y = 11418;
U =9.0441; V = 3.7319.

Thus extrapolation significantly improved the results.

By plotting the characteristic grid points in the X-¥ plane, one
sees that the characteristics become more parallel near the apex.
Thus the above problem is ill conditioned. If the initial curve is
chosen as ¥V = 0, 1 < X < 2, the problem becomes so ill condi-
tioned that the method fails for 81 datum points on the initial
curve.

Ezample of use. In the following listing TEST CH sets up the
initial data and makes the necessary calls to CHARAC to solve
Ezxample (I1) for 81 initial datum points. CH COEF computes the
coefficients A1 =1— U%, 4. = —UV,As = - UV, Ay =1 ~ V?
H, = —=4U exp (2.X), B, = 0, By = 1, B; = '—1, B, = 0, Hy, =0
as determined from (5).
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function evaluation, series

procedure series (places, lerms, base, digit, sgn, numerator, de-
nominator, numf, denomQ); value places, terms, base; integer
places, terms, base, sgn, num0, denomQ; integer array digit;
integer procedure numerator, denominalor;

comment Programs for very precise summation of series are
conventionally written in machine language and employ multi-
precision routines to perform arithmetic on especially defined
multiword registers. The present algorithm requires only integer
arithmetic and can be implemented in any algebraic language.
It is applicable to series in which the ratios of successive terms
can be expressed as quotients of given integers or integer func-
tions of term positions.

The sum of a given series is computed to a given number of
places, places, in a specified base for representation, base. The
number of terms needed, terms, should be calculated outside the
procedure. Procedures numerator and denominator are to be
obtained from the fraction {th term/({—1)-th term, expressed as
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a rafio of two integer functions of 4. (That fraction should prefer-
ably be reduced to its lowest terms.) num0 and denom0 are the
integer numerator and denominator of the Oth term. The out.
puts of the procedure are the sign of the result, sgn, the integer
part, digit {01, and the digits of the fractional part, digit [1], - -~
digit [places].

For example, one way to compute sin 0.6 = .6 — ,63/3! + .65/5!
~ -+ correct to 1000 decimal places is to call series with the
parameter values: terms = 226, num0 = 3, denom0 = 5, (and
since 4th term/(Z—1)th term = — .62/22(2i+1)) numerator (i) =
—9 and denominator(i) = 507(2(-+1). By taking base = 100000
and places = 200, five decimal digits of the result will be obtained
per word of the array digit.

The use of a large base (and, consequently, smaller places)
results in faster computation, as the number of operations is
proportional to (placesXiterms) for large values of terms and
places. However, the intermediate products (baseXnum[z]X
coefli]) (and coeffz] can almost equal denom[:]) should not ex-
ceed the largest number representable by an integer variable.
Also within this limit should be the product of base and the in-
teger portion of the result;

begin
integer ¢, j, k, l; integer array num[—1:ferms], denom,
coefl0: terms);
comment HExpress the series by the expression

g(cu+%(c1+-~+—g(m)w>> ¢y

where n; and d; are positive and ¢; are 2=1. (For short, n, d, ¢
and ¢ in (1) stand for num, denom, coef and terms, respectively);
num(—1] = 1; num[0] := abs(mum0); denom(0] := abs-
(denomQ); coefl0] := sign(num0) X sign(denom0};
for j := 1 step 1 until terms do
begin
k := numerator(j);
denom[j] := abs(l);
end;
comment Calculate digits one at a step by extracting the in-
teger part of base X (1) and restoring the fractional part in
form (1);
for 7 := 1 step 1 until places do
begin
l:=0;
for j ;= terms step —1 until 0 do
begin
E := numl[j] X (coefljlXbase+1); | := k =+ denomljl;
coef[f] := k — 1 X denoml[jl; num[j] := numfj—1}
end j;
digitli] =1
end 7;
comment Some digits may be negative or larger than base in
absolute value. Process the array digit to obtain true base

H]

l := denominator(j); numlj] := abs(k);
coef[§] := coef[j—1] X sign(k) X sign(l)

representation;
l:=0;
for 7 := places step —1 until 1 do
begin

ko= digitli) + I; 1 :=k + base; digitli] :== k — base X I;
if digit[z] < O then
begin digit[t] := digit[i] + base; l:=1~—1end

end;

digitl0] := 1; sgn := sign(l);

if ] < 0 then

begin
digit0] := —1 — 1; digit[places] := digit[places] — 1; )
for i := 1 step 1 until places do digit[i] := base — 1 — digitli]

end

end series
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