
COO-3077-28

Courant Institute of

Mathematical Sciences

AEC Computing and Applied Mathematics Center

A Simple Lambda-Calculus Model

of Programming Languages

S. Kama! Abdali

AEC Research and Development Report

Mathematics and Computers

July 1973

New York University

UNCLASSIFIED

AEC Computing and Applied Mathematics Center
Courant Institute of Mathematical Sciences

New York University

Mathematics and Computers COO-3077-28

A SIMPLE LAMBDA-CALCULUS MODEL OF

PROGRAMMING LANGUAGES

S. Kamal Abdali

July 1973

Contract No. AT (11-1) -3077

UNCLASSIFIED

ABSTRACT

We present a simple correspondence between a large subset of

ALGOL 60 language and lambda-calculus. With the aid of this

correspondence, a program can be translated into a single lambda-

expression. In general, the representation of a program is

specified by means of a system of simultaneous conversion rela-

tions among the representations of the program constituents.

High-level programming language features are treated directly,

not in terms of the representations of machine-level operations.

The model includes input-output in such a way that when the

representation of a (convergent) program is applied to the input

item representations , the resulting combination reduces to a

tuple of the representations of the output items. This model

does not introduce any imperative notions into the calculus;

the descriptive programming constructs, such as expressions, and

the imperative ones, such as assignments and jumps, are trans-

lated alike into pure lambda-expressions. The applicability of

the model to the problems of proving program equivalence and

correctness is illustrated by means of simple examples.

-Ill-

CONTENTS Page

1. Introduction -'-

2. Description of the Model — Basic Features 3

2.1 Preliminaries 3

2.2 Programs as Lambda-Expressions 6

2.3 Variables 7

2.4 Constants, Operations, Relations 7

2.5 Expressions 8

2.6 Assignments '-

^

2.7 Compound Statements .
10

2.8 Blocks '
-'

11

2.9 Input-Output :
•; '

•

' " 13

2.10 Programs ,. 15

2.11 Conditional Statements 1"^

2.12 Arrays

3. Iteration and Jumps

3.1 Recursive Definition of Lambda-Expressions 22

3.2 Iteration Statements 25

3.3 Jumps and Labels

4

.

Procedures
IS

4.1 Functions

4.2 Call-by-name, Side-effects ^'^

4.3 Integer Parameters

4.4 Label Parameters

5. Conclusion

6. References

19

22

30

35

38

51

53

54

-IV-

1. INTRODUCTION

If one wishes to study properties of programs, then one should

either develop rules of deduction and inference that apply directly

to programming language constructs (e.g., Hoare [1]), or represent

programs by the objects of some mathematical system [e.g., 2,3,7-10]

and work with these representations. As a step in the second

direction, this paper describes a way of representing programs

by lambda-expressions [4-6]

.

Since a number of lambda-calculus (or, related, combinatory

logic) models of programming languages have already appeared in

the literature [among them, 7-10], the proposal of yet another

such model may require justification. So we will first indicate

some distinguishing features of our model vis-a-vis others.

1. Our model does not introduce any imperative or otherwise

foreign notions to lambda-calculus. This is in contrast to

Landin [7] , in which imperative features of programming languages

are accounted for by ad hoc extensions of the calculus. We find

that the calculus, in its purity, suffices as a model of program-

ming languages. By not making any additions to the lambda-calculus,

we have the guarantee that all its properties, in particular, the

consistency and the Church-Rosser property [6] , are valid in our

model. For example, even when a program requires a fixed order

of execution, the lambda-expression obtained by evaluating the

program representation in any order, whatsoever, represents the

program result correctly.

2. Programs are translated into lambda-expressions, not

interpreted by a lambda-calculus interpreter (Reynolds [10]).

Thus, programming semantics is completely reduced to lambda-

calculus semantics, but without commitment to any particular view

of the latter. Also, all lambda-expression transformations are

applicable to programs.

3. Assignments are modelled by the substitution operation of

lambda-calculus. Consequently, the notions of memory, addresses, and

fetch and store operations do not enter our model in an explicit

manner (Stratchey [8], Reynolds [10]).

-1-

4. High-level programming language constructs are represented

by lambda-expressions directly, not in terms of the representations

of the machine-level operations (Orgass-Fitch 19]) of the compiled

code.

5. This model spans the full ALGOL 60 language. It is also

applicable to a number of other advanced programming features, such

as collateral (parallel) statements, the use of labels and procedures

as assignable values, coroutines, etc.

6. As a matter of opinion, it seems that our representations

are much simpler and clearer than the ones given in other models.

Also they seem to have obvious intuitive justifications.

The model will be described informally, and only for a representa-

tive set of programming language constructs. But enough motivating

details and illustrations will be provided to, hopefully, convey

the method, and suggest its extension to other programming

features. A more complete treatment can be found in [11]

.

-2-

2. DESCRIPTION OF THE MODEL — BASIC FEATURES

2 . 1 Preliminaries

To fix our terminology and notation for lambda- calculus (LC)

,

we include the following definitions.

We assiime given a set of entities, called variables .

A lambda-expression (LE) is either a variable, or the application

(e-je-) of an LE e, to an LE e^ , or the abstraction (Xx:e) of

an LE e with respect to a variable x. In writing LE ' s

,

parentheses may be omitted under the convention that applications

associate to the left and abstractions to the right, with the

former taking precedence over the latter. For instance,

(Ax: (Ay: (Az:(((x z) (y z))u))))

may be abbreviated to

Ax: Ay: Az: xz(yz)u .

As an additional convention, the above may be further abbreviated to

Axyz : xz(yz)u

Identity of LE ' s is indicated by the symbol '=', which is also

used as a definition symbol.

In the LE (Ax:e) , the first occurrence of x is a binding

occurrence, and e is the range of that occurrence. An occurrence

of a variable in an LE is bound if it is either binding or in the

range of any binding occurrence of the same variable; otherwise,

the occurrence is free . If e,f, ,...,f are LE ' s and x^,...,x

variables, then

sub [f^ , x^ ; . . . ; f^ , Xj^ ; e]

denotes the result of simultaneously substituting f. for all free

occurrences of x. (1 _< i £ n) in e.

The basic LC rules of transformation, called contractions , are

these

:

T

-3-

(a) Xx:e -* Ay: sub[y,x;e],

if y has no free occurrences in e, and no free

occurrences of x become bound occurrences of y

by the substitution.

(3) (Xx:e)f -^n sublf,x;e],

if no variable with free occurrences in f has

bound occurrences in e.
,

,

(n) Xx: ex ^ e,

if X has no free occurrences in e.

The converse of 3- (or n-) contraction is called 3- or

n-expansion . Contractions and expansions may be applied to the

whole or a part (which must itself be an LE) of an LE

.

Reduction (->) consists of a (possibly empty) sequence of

contractions. As an example of reduction, it can be shown

that

(Ax, x„ : e) f, f„ -> sub [f , ,x, ; . . . ; f^ ,x ;e] ,
1 n 1 n ii nn

provided that no variable with free occurrences in f's has bound

occurrences in e. Conversion (=) consists of a (possibly empty)

sequence of contractions and expansions. If it is the case that

e = f, then there exists an LE g such that e ^- g and f -^ g

(Church-Rosser Theorem [6]) . An LE is irreducible if no 3- or

n-contraction is applicable to it, even after any intermediate

a-contractions. A normal form of an LE e is an irreducible LE g,

if one exists, such that e = f. If e possesses a normal form f,

then f is unique up to the applications of a-contractions, and,

moreover, e -> f ; f can be obtained from e by using, among other

possibilities, the standard-order reduction algorithm , in which

one always chooses the leftmost 3- or n-contraction at each step

in reduction. '

A natural interpretation of LE ' s is as functions: the LE (f e)

may be regarded as the functional expression f (e) , and (Ax:e) as

the function f defined by f (x) = e in the customary functional

notation. With this interpretation, the LE (e^e-e^-.-e) may be

-4-

viewed variously as e, (e„ , . . . ,e) , or [e, (e„)] (e-, , . . . ,e) ,± z. n i. ^ J n
where e, (e^) is understood to yield a function as its value, etc.

The functional interpretation of LE ' s is the intuitive basis of

our model.

Following are some definitions and abbreviations that will be

used later:

<a, ,...,a > = Ax: xa, . . . a , n >In 1 n —

I = Ax:x

Q E (Axy:xx) (Axy:xx)

Y = Ax: (Ay: x(yy)) (Ay: x(yy))

a ,b = Ax: axb

elem. s Ax, . . .x : x. , 1 < i < n
1 , n 1 n 1 ' — —

replace . = Ayx, . . . x : <x- , . . . ,x. _, ,y , x. , , . . . ,x >, l<i<n.

Detailed information about LC may be found in [4-6]

.

We use the ALGOL 60 notation [12], whenever possible, to express

programming language constructs. By the environment of a point in

a program, we mean a list of all the variables whose scopes include

that point; in this list, the variables are arranged in their

order of declaration within individual blocks, with the blocks

taken in the innermost to outermost order. In general, the LC

representation of a construct may depend on its own environment

(i.e., of the point at which it occurs), as well as the environments

of its components. We denote the LC representation of a construct X

appearing in the environment E by {x}„ , or simply {x} , when the

environment is understood, or is irrelevant to the representation,

such as when X is a constant.

-5-

2.2 Programs as Lambda-Expressions

Before we can choose the LC representations of various

programming language constructs, we must decide exactly how we

are to represent complete programs. We will take the view that

it is the external input-output behavior that most appropriately

characterizes a program. Consider, for example, the program

begin integer a , b , c

;

read a; read c; b := a+c; write b; b := b-2xc; write b

end

in which read and write are assumed to be the standard statements

for performing input-output operations. As far as only the

external input-output is concerned, the above program behaves as

a two-argument function which produces as value two quantities,

the sum and the difference of the argiiments ; in LC notation, this

function can be expressed by

Axy: <x+y, x-y> . (1)

(Note that x+y and x-y are not strictly LE ' s , but they can be

easily translated to be such.) Accordingly, we would like to

set up the model in such a manner that the representation of the

above program may turn out to be the LE (1) , or, as seems more

likely, an LE which can be reduced to (1) . So constructed, the

model would enable us, in essence, to abstract out of a program

code the function from the input space to the output space that

the program computes .

More generally, if P is a program, i ,...,i its inputs,

and o, ,...,o its outputs, then our representations are intended

to satisfy the reduction relation

{P}{i,}... {i„} ^ <{o,},...,{o^}> . (la)
1 p 1 q

While the main goal of the present model is to obtain purely

functional descriptions of programs, it will become evident

later that the representations in this model are also capable

of simulating the execution-time behavior of programs. Specifically,

-6-

when a slightly modified version of the standard-order reduction

algorithm is employed to carry out (la) , it, in effect, furnishes

the step-by-step trace of executing the program P with the input

data items i, , . . . ,i .

2 . 3 Variables

Program variables are represented by LC variables, possibly

with the same symbolic denotation. However, all program

variables with non-disjoint scopes must have mutually distinct

representations; thus, if the same identifier is used for two

such variables , the corresponding LC representations must be

distinguished from each other, say, by superscripting the

identifier with the respective block level numbers.

A single LC variable is used to represent an array also;

however, the treatment of arrays is deferred to a later section,

and until that discussion we assume all variables to be simple.

2 . 4 Constants, Operations, Relations

We do not concern ourselves here with the purely arithmetical

aspects of programming language; so we take for granted the LC

representations of numbers, logical values, arithmetic and

logical operations, and relations. (The representation method

may be found in [4,11].) We assume that these representations

satisfy the reduction relations of the form

{*} {a} -^ {* a} ,

{o} {a} {b} ^ {a o b} ,

where * and o are unary and binary operators, respectively, and

a and b are the quantities of proper types. (Note: {x} denotes

the LC representation of X, ref. end of Sec. 2.1.) The representa-

tions of logical values are assumed to satisfy

{true} {a} {b} ^ {a}

{ false } {a} {b} ^ {b}

for all a and b.

-7-

2 . 5 Expressions

Let us limit ourselves for the present to the expressions that

do not contain function designators. (This restriction will be

lifted later when we discuss procedures.) In view of the previous

section, the representation of such expressions is essentially a

matter of rearranging the individual operator and operand representa-

tions into a parenthesized prefix form. For example,

a + if b 7^ then c/b else 15 (2)

is represented by

{+}{a}{{7^}{b}{0}({/}{c}{b}){l5}) . (3)

For convenience in reading, we utilize Landin's idea of

"syntactic sugaring" [7] : we designate (3) by simply underlining (2)

2.6 Assignments

Before discussing any particular type of statements, we will

first indicate the general idea behind our LC representations.

Consider a given statement S of a program. Let (v, ,...,v) be' In
the environment of S , and denote by F the section of the program

following S and extending all the way to the program end. (F will

be referred to as the program remainder of S.) The two parts of

the program, one consisting of F alone, and the other composed of

S and F together, may be interpreted as two functions 4) and 4)',

respectively, of the arguments v, ,...,v . With this interpreta-

tion in mind, the effect of the statement S is to transform

(J)
into (j) ' . As the representation of S, therefore, we take precisely

the function (to be accurate, the fionctional operator) a given by

[CF (cf))] (v^, . . . ,v^) = (})' (v^,. . . ,v^) ,

which accomplishes the above transformation.

A key step in representing a programming operations is to find a

suitable (f)' for it, based on the intuitive understanding of the

effect of the operation. Purely for the sake of motivation, we

will include details of this step in describing the first few of

our representations.

-8-

Let us now turn to the assignment statement v. := e in the

environment (v, ,...,v). The (j) ' in this case differs from cj)

in having the argument v. set to e. Thus, in effect, the

above statement behaves as the function such that

[0(4))] (v-j^, . . . ,v^) =
(J)' (v^, . . . ,v^) = 4) (Vj^,. . . ,v^_^,e,v^_^^ ,. . . ,v^)

Accordingly, we adopt the following LC representation of

assignment statements.

{v. := e}, > = A(j>v- ...v : (^v^ ...v. nlelv.,, ... v . (4)
1 (v, ,...,v) ^1 n ^ 1 1-1 1+1 n

1 n

(An assumption londerlying (4) is that any needed type-conversion

has been incorporated within e itself.)

If the expression e contains only the variables v, ,...,v

for some m < n, then the variables v ,,,..., v can be dropped
m+i n

from the above LE (by n-contraction) , reducing it to

A(t)v, ...V : (j)V, . . . V. ,{e}v.,,... v^ .^1 m ^ 1 1-1 1+1 m

Note that the multiple assignment of ALGOL 60 and the

collateral (parallel) assignment of ALGOL 68 pose no special

problem. As an illustration of the latter, the statement

(x := y, z:=x) occurring in the environment (x,y,z) has

the LC translation A(J)xyz : (f)yyx.

From (4) it is clearly seen that the LE representing an

assignment statement does not contain any free variables , as

V, ,...,v are the only variables that can legitimately occur

in e. This property of containing no free variables will be

seen to be enjoyed by the LC representation of all types of

statements, and will be used to simplify the representations.

-9-

2 . 7 Compound Statements

Consider the compound statement S = begin S, ;S„ end appearing

in the environment (v, , . . . ,v) . Let F be the segment of the

program that follows S. The execution of S;F has precisely

the same effect as that of S,;S„;F. We can imagine the program

sections F, (S-^'F), and (S, ;S ;F) to be some functions

(t> , <p" , and (}) ' , respectively, of the arguments v, ,...,v ,

and S, S, , S- to be the functional operators a, a,, a- such that

l02i<t>)] (Vj^, . . . ,v^) = (})" (v^, . . . ,v^) ,

[a^ (())")] (Vj^,. .. ,v^) = (|)' (Vj^, . . . ,v^) ,

[a (4))] (v^, . . . ,v^) = (j)' (v^,. . . ,v^) .

In LC notation

,

(j)" = Av, ...v : a-tf) V, . . . V -*
02<t> I

as the statement representations O2 and (|) do not contain free

variables; hence,

a = Actv, . . . V : (i)'v, ... V = Ad)V, . . . v : a, d)"v, . . . v^1 n^l n ^1 nl^l n

-> A(j)V, . . . V : a, (a_(j))v, ...v -> \^: o
^
{a 2<^) .

The generalization to an n-component compound is obvious. So

we are led to the following LC representation of compound statements.

(begin S^;S2; • • • ;S^ end} e \^: [S^] {{S^] {. . . {{S^]^) . . .)

)

Notice the convenient fact that the individual statement

representations in (5) appear from left to right in the same

order in which the statements occur in the compound (Cf

.

Stratchey [8]).

(5)

-10-

Example : Rules (4) and (5) are illustrated by the following

statements and their LC representations. The environment is

assumed to be (x,y)

.

(a)

(b)

Statements

begin

X := 2

;

y : = x+ 3 ;

X := y+x

end

begin

y := 5

:

X := y+2

end

LC Representations

A(})xy: (p2_ Y ^ A, say

Acj)xy: (^x x+3 = B

A4)xy : 4) x+y y = C

X(^: A(B(C <j))) = D

X(})xy: (t)X 5^ = E

Acf)xy : (}> y+2 y = F

Acj): E(F 4)) E G

It can be verified that the LC representations of the equivalent

program segments (a) and (b) , namely, D and G, are indeed mutually

convertible LE ' s ; specifically, D -> A(|)xy: 4)]_ 5 -^ G. The normal

form A(J)xy: (}) 2 ^^ of these representations corresponds to the

collateral assignment statement (x := 7, y := 5), which may

be thought of as the simplest version of the above code.

2.8. Blocks .

Next, let us consider a block S whose head declares the

variables u, ,...,u , and initializes these to the values c, ,...,c
m'

and whose body consists of the statements S, ,...,S , in that
1 p

order. The execution of S can be broken down into three operations

performed in succession.

1)

2)

Extension of the existing environment by the variables

u1' ,u (initialized at c, ,

.

m
Execution of the compound begin S^ ; . . . ;S end

3) Deletion of the variables u, ,...,u from the environment.
1 m

-11-

Let these three operations be denoted by the functions a, 3,

and Y« Let (v, , . . . ,v) be the environment of S. Then with

the obvious significance of other symbols, we have

[a (4))] (v^ , . . . ,v^) = 4) (c^ ,. . . ,c^f v^,...,v^)

[B ((}))] (Uj^, ... ,Uj^,v^ , ... ,v^)

[a, (a„ (... (a ((})))...))] (u, ,... ,u^,v^ ,... ,v)
i ^ 9 1 m i n

[Y (*)] (Uj^, . . . ,Uj^,Vj^, . . . ,V^) = (}) (v^, . . . ,v^)

[a((^)] (Vj_,... ,v^) = [a(6(Y('l')))] (Vj_,... ,v^) .

By expressing the above in LC notation, and making use of

proper substitutions and simplifications, we obtain -1"

a = Ad)v,...v : a,(a^{...(a (Au, . . . \r : *))...)) c, .. . c v^ . . . v^1 n 12 pi in ^'

'

1 ml n

Consequently, we choose the following representation of blocks:

{begin <type>u- :=c, ; . . . ;<type>u :=c ;S, ;S_ ; . . . ;S end}, ^—^— ^^ 1 1 '-uf
jn ml2 p (v, , . . . ,v)in

= A())V^...v^: {Sj^}p({S2}p(. .. ({S }p(AUj^. . .Uj^rcf))) . ..))

^^l^E ---^^m^E ^1 •••
^n '

where E = (v, ,...,v) and F = (u, ,...,u ,v, , . . . ,v).In 1 m 1 n

(6)

In (6) , we assume that the expressions c. include any

required type-conversion operations. In the case that the

variables are left uninitialized in the block-head, any arbitrary

LE can be used in place of c . . One might wish to use for this

purpose an LE which would play the role of the everywhere undefined

function. This function is modelled, for example, by the LE

-12-

Q. = (Axy:xx) (Axy:xx) , which has the property fix -> fi for all x.

It should be noted, however, that Q. does not possess a normal form

(as can be easily verified) . As a result, if fi is used in place

of the missing c. 's in (6) , then the presence of any variables

that remain undefined throughout the program execution would

cause the program representation to behave as if the program

contained an infinite loop.

If the variables declared in a block-head are not initialized,

then V. (1 _< i _< n) have no free occurrences in the expression

at the right-hand of (6) , and we have the simpler representation

{ begin <type>u, ; . . .
; <type>u ;S ;S^ ; . . . ;S end } , >In

5 Xcf): {S, }„({S„}„(. . . ({S^}„(AUt . . u^:4)))...)) fi fi ...Q,Xr^r pro. m
1^ j

m times

where F = (u^^ , . . . ,u^, v^ , . . . ,v^) . (7)

2 . 9 Input-Output

We shall assume for simplicity that the program input and

output operations are each restricted to a single file. A file

of items a,,..., a will be represented by the tuple

<{a,},...,{a }>, i.e., Xx: x{a, } ... {a } .

(The empty file is represented by the null tuple < > e Ax: x = I.)

For given LE ' s u, v, and w, we will abbreviate the LE

Ax: uxv by u,

v

and the LE u,

v

,w by u ,v,w . It can be

easily verified that

<x,,...,x > ,y ^ <x, ,...,x ,y>
1 n -^ 1 n -^

1 n 1 n

so that "," may be regarded as the operation of writing on a file,

and the file resulting from writing an item a on a given file b

may be represented by {b},{a} .

-13-

Now let S be a statement appearing in the environment

V, , . . . ,v of a program, and let a be the LC representation of S.

In' our disucssion so far, a has been an LE of the form

X(bv, ... V : ... , (*)^ 1 n ' *
'

with the argiament 4) standing for the program remainder of S.

Accordingly, the execution of S has been modelled by the

reduction of the LE

o (b V, ... V ,— -1 -n

in which the underlined symbols denote the values of the

corresponding arguments immediately prior to the execution of S.

In order to take input-output into account, we will generalize

the representations so as to model the above execution by the

reduction of the LE

a (j) V, ... V {w}{u, }{u~} . . . {u } , (8)
_ _i. _2. 1 ^ m

with w denoting the output file and u. the i-th of the m items

remaining on the input file at the moment of execution. (As soon

as an item is read, it is supposed to disappear from the input

file.) This arrangement requires that the representations of

statements be generally of the form

AAv, . . .V o i, . . .i : . . . ,^ 1 n 1 m

where o, i,,...,i are the extra variables denoting the output
1 m

file and input items. It must be evident, however, that the

representations of those statements which do not involve input-

output can be simplified back to the form (*) by the use of

n-contractions . Furthermore, in the case of input-output state-

ments, the following choice of LC representations is obvious.

{read v.}(^_^^_^^^^) = A(},v^ . . . v^oi :*v^. . . v ._^i v.^3^...v^o (9)

{write e}, i = A({)V,...v o: (()V,...v o,{e} , (10)
(V, ,..., V) J. n X n

where e is some expression to be output.

-14-

2 . 10 Programs

Let the input file initially presented to a given program

consist of items i, , . . • ,i , and let o, , . . . ,o constitute
1 p 1 q

the items of the final output file produced by the program.

As remarked in Sec. 2.2, we wish to choose a program representa-

tion so as to obtain the relation

{program} {i, }... {i } ^ <{o,},...,{o }> . (11)
1 p i q

Now the execution of a particular statement of the program is

simulated by an LE given by (8) in the previous section. Suppose

that as an instance of such a statement we take the entire outer-

most block of the program. Recalling the significance of symbols

used in connection with (8) , we obtain the following conditions:

a = {program block},

n = as the environment is null,

{w} =1, as the output file may be considered empty at the

start of the program,

m = p , and u.=i. , l<j<p.

Furthermore, in place of ^ , the "null" program remainder,

we may arbitrarily choose to employ the LE 1 = X(^ : ^ .

On substituting these values , the execution of the program is

seen to amount to the reduction of the LE

{program block} I I {i, } ... {i } . (12)^ ^ i p

Next, consider (8) again — but this time for the case when the

entire program has been executed. Now we have:

0=1, the null program segment,

n = 0, as the environment is null,

{w} = <{o-| },..., {o }> , representing the final output file,

m = 0, assuming the program exhausts the input file,

()) = I .

-15-

Thus, (8) in this case becomes the LE

which reduces to

I I <{o, } ,. . . ,{o }>

<{o, },. .. ,{o }> . (13)

If our representations work properly, then the LE (12) should

reduce to the LE (13) . Comparing this reduction relation with

(11) , we obtain

{program} = {program block} I I . (14)

Example . To illustrate the parts of the model introduced so far,

we will describe in some detail the representation of the simple

program mentioned at the beginning of Section 2.2. The components

of the program and their representations are shown side by side

below.

Statements Representations

begin integer a , b , c

;

read a; A(J)abcoi : (})ibco = A , say

read c ; Xcjjabcoi :(j)abio ^ B,

b := a+c; A())abc:(t)a a+c c = C ,

write b

;

A(t)abco: (Jjabc o,b = D ,

b := b-2xc; A4)abc:())a b-2xc c = E ,

write b X^ahco:(\)ahc o,b = F ,

end X<i): A(B (C (D (E (F (Aabc :<{))))))) S^i^f2 e g .

Since G represents the program block, the representation of

the whole program is Gil. It can be easily verified that

G I I -> Axy ;< x+y , x-y> .

Thus Gil indeed abstracts out the input-output behavior of the program.

(Cf. the discussion in Sec. 2.2.) The execution trace of the

above program, when run with the data items 5 and 3, is reflected

in the following LC reduction sequence.

-16-

Gil 5 3^ A(B(C(D(E (F(Aabc: I))))))n$^ni 5 3

-> B(C(D(E(F(Aabc: I))))) 5 fi f^ I 3

^ C(D(E(F(Aabc: I)))) 5 f2 3 I

^ D(E(F(Aabc: I))) 5 5+3 3 1-^ D (E (F (Xabc : I))) 5 8 3 1

^ E(F(Aabc:I)) 5 8 3 lj_8 -> E(F(Aabc:I)) 5 8 3 <8>

^ F(Aabc:I) 5 8-2x3 3 <8> ^ F(Aabc:I) 5 2 3 <8>

^ (Aabc:I) 5 2 3 <8> ,2 -^ (Aabc:I) 5 2 3 <8,2>

^ I<8,2> -> <8,2>
~

2.11 Conditional Statements

Recall that the LC representation of a boolean expression b has

the property that for all LE ' s p and q, we have

{b} p q -> p , if b has the value true ,

-^ q , if b has the value false .

In view of the above property, we choose the representation of

a two-branch conditional statement as follows:

{if b then S, else S^}, v— 1 2 (v^,...,v^)

= A c})v,...v : {b} ({S, }(J)Vt . . .V) ({S„ }4)V, . . . v) (15)
1 n 11 n 21 n

For the purpose of representation, a one-branch conditional

statment (an if-statement , in ALGOL 60 terminology) may be

viewed as a two-branch conditional with a dummy or "do-nothing"

statement for the second branch. When appearing in the environment

(Vi,...,v), the "do-nothing" statement can obviously be

represented by the LE

Acbv, ... V : (bv-, . . . v ,^1 n ^ 1 n

which reduces to I . On substituting this LE for (S^) in (5)

,

we obtain

{if b then S, } , >— 1 {v^,. . . ,v^)

= A(t)V, ...v„: {b} ({S, }ct)V, . . .v^) ((j)V, . . . v„) . (16)
1 n 11 ni n

-17-

It must be evident that if b is a boolean expression , then for

for all LE's p, q, and r, the following conversion relation

holds

:

{b}(pr) (qr) = {b} p q r .

The repeated application of this relation allows us to rewrite

(15) in the alternative form

{if b then S^ else S2}
(^ ,. . . ,v)

^ ^"^^1 " * ^n '
^^^S^} {S2 }(t)V^

. . . v^

(17)

(Notice that although the LE's {S,} and {S-l do not contain

free occurrences of v, ,...,v , the LE {b} may very well contain

these; therefore, these variables cannot be dropped from (17).)

On taking S^ to be the dummy statement in (17) , hence i^2^ ^° ^®

I, we get the following alternative to (16):

{if b then S, } ,„ „x =X(})V .--v: {b} {S^ }!(}) v . . . v (18)

Example . Suppose that the statement ^

if a < b then a := a+1 else b := a+b

appears in the context (a,b,c) in a program. The formulas (15)

and (17) respectively yield the LE's (A) and (B) as the representa-

tions of the above statement.

(A) X(f)abc: a<b ((Acjiabc: ({) a+1 be) (})abc) ((X(j)abc: ipa a+b c) (jiabc)

-» A())abc: a<b ((}) a+1 be) i<i> a a+b c)

= A(J)abc: a<b ((}) a+1 b) {<t>a a+b) c

-^ A(tiab: a<b (cj) a+1 b) {^a a+b)

(B) Acfiabc: a<b (A(|)abc:
<t>

a+1 be) (A(|)abc: <^a a+b c) ^lahc

-> A(t)ab : a<b (A(J)ab: <t>
a+1 b) (A({)ab: ({)a a+b) 4)ab

-18-

2. 12 Arrays

Arrays can be interpreted as tuples and hierarchies of tuples,

as follows: An array of a single dimension is represented by a

tuple of the representations of the individual array elements,

taken in the order of the lowest to the highest subscript. An

array of dimension n+1 is represented by a tuple whose elements

are the representations of the n-dimensional subarrays (or slices ,

in the ALGOL 68 terminology [13]) obtained by fixing the first

subscript in turn from the lowest to the highest possible value.

For example, the array A[l:2, 1:3] is represented by

<*^^j^l'^12'^13^ ' <^21'-22'-23^^

where A. . is the representation of the array element A[i,j].

As in the case of simple variables, an array identifier can itself

be used as the LC variable to denote the array.

With the above interpretation of arrays, we next describe the

representation of subscripted variables in expressions, assign-

ments to subscripted variables, and array declarations. In this

description, we assume, for simplicity, that all arrays have the

lowest subscript bound of 1.

Subscripted variable as an operand in an expression . The repre-

sentation in this case is just the corresponding element of the

tuple representing the array. Thus, we need some operator to

extract an element of a tuple, given the element position. For

given integers i and m such that 1 < i < m, define the LE

and note that

elem. = Ax, . . . x : x. ,1 ,m 1 m 1 '

<a, , . . . ,a > elem. -> a.
1 m 1 , m 1

Thus, given the declaration array v[l:m] , we have

{v[i] } = V elem.
1 ,m

-19-

This representation is inadequate, since, in general, i and m

are given as expressions rather than constants, and their values

may not be known at the time of LC translation of the program.

However, it can be shown [11] that there is an LE elem such that

for all LE's a and b, if a -> i and b -> m for integers 1 <_ i £ m,

then

elem a b -» elem.
1 ,m

Hence, given the array declaration v[l:e], we define

{v[f] } = v(elem {f}{e}) . .,

More generally, for array v [1 :e, , . . . ,1 :e] ,

{v[f^,. . . ,f^] } = v(elem {f^}{e^}) ... (elem ^f^^^^n^^ *

Assignments to subscripted variables . The representation

consists in replacing the designated element of the tuple repre-

senting the array with the representation of the new value, and

requires changing all the slices that contain the element. As an

example of a replacement operator, define, for given integers

i and m such that 1 _< i £ m,

replace
j^^^^

= Ayx^^ . . .Xj^:<x^ , . . . ,x^_^,y ,x^^^ , . . . ,x^> .

Then, it is easy to see that for all LE's a, ,...,a ,b,

<a^,... ,a^> (replacej^^^ b) ^ <aj^ , . . . ,a^_^ ,b , a^^^ ,a^> .

Again, one can define [11] an LE replace with the property that

for all LE's a and , b, if a ^^ _i and b ^ m, where i and m

are integers, 1 £ i £m, then

replace a b -^ replace
,m

Hence, given the declaration array v.[l:e], we have

{v.[f]:=g}, „ . s A(()v, . . . v :(})v, . . .V . ., (v. (replace { f } {e} (g)))

] \V-| , . • . '"„' ' " -'- j"-'- J

V . , , . . . V .

3 + 1 n

-20-

The above representation can be generalized to the case of

arrays of dimension higher than one [11] , but we omit these

details.

Array declaration . Recall that a variable declaration affects

the representation of the block in whose head it occurs;

specifically, the block representation has as a component the

initial value of the variable. Array declarations are handled

precisely in the same fashion as the simple variables, with the

following exception: if an array is not initialized at the time

of declaration, the block representation is obtained by assuming

all the array elements to be fl. Thus, for an array with the bound

pairs 11:2, 1:3J, the initial value is represented by

<<f^ ,fl ,f^> ,<f2 ,Q ,fl>> . Since, in general, array bounds may be

specified by expressions, we need to create tuples of arbitrary

dimensions and sizes in which all elements are 9,. This is possible

by means of an LE tupinit with the property

tupinit 1 m ->- <S ,n,f^. . . ,n>
L , J

m elements

tupinit n+1 m, . . . m
, ,

-> <A,A,...,A> , where—"^ —1 —n+1 I]

^
Y

^

m, elements

A = tupinit n m^ ...
HI .

-i
•

The definition of tupinit may be found in [11]

.

Example . The representations discussed above are illustrated

on the following block, assumed to occur in the environment (n)

.

begin array p[l:n], q[l:2, 1:2]; integer r

;

r := q[e,f]; A = A(})pqrn : 4)pq (q (elem{e}2) (elem{ f }2)) n

p[r] := g B = A({)pqrn : (j) (p (replace r n {g})) qrn

end C = A(|)n:A(B(Apqr :({))) (tupinit 1 n) <<fl ,n> , <Q ,fl>>l^n

n;

-21-

3. ITERATION AND JUMPS

3.1 Recursive Definition of Lambda-Expressions

In dealing with program loops, we will be in need of the

recursive definitions of the form

in which an LE is defined in terms of itself, by using its own

name for one or more of its components. Much towards the precise

understanding of such definitions has been contributed, among

others, by Morris [14], Manna [3,15,16], de Bakker [17], and

Rosen [18] , who have built upon the pioneering work of Kleene

[19] and Scott [20,21], Referring the reader to the cited

work for a rigorous analysis of recursive definitions, we shall

be content here with informal, intuitive comments.

A possible explanation of (19) is the following purely

mechanical one. As would be possible in the case of a non-

recursive definition, we allow the replacement of an appearance

of A in any LE by the right-hand side of (19). In other words,

we interpret (19) as a reduction rule

A^ A A . (19a)

By a sequence of such reductions of A and the other LC contrac-

tions, it may be possible to reduce an LE containing A to a normal

form. It has been shown (e.g., Rosen [18]) tha^ the Church-Rosser

property holds with this broader sense of reduction also;

consequently, most other important properties of reduction, such

as the uniqueness of normal forms and the correctness of the

standard-order reduction algorithm, are valid when the reduction

rules of form (19a) (with distinct left-hand sides) are admitted.

The interpretation of a recursive definition as a replacement

or reduction rule certainly enables us to use the definition;

but what, actually, is the object that is so defined? It is

obvious that applying the reduction rule (19a) to A itself cannot

lead to an "ordinary" definition — a non-self-referencing —
description of A. However, such a definition may be possible

-22-

if we interpret A as a solution of the reduction relation (not

rule)

A-^...A...A... , (20)

or the conversion relation /

/\ — • • • 1\ • • • I\ •••• V^JL/

These relations have, in general, infinitely many solutions.

To see this in the case of (21) , rewrite it in the form

or
A = FA , (22)

where F = Xx: ...x...x... does not involve A. It is now
oo

immediate that for all LE ' s p, the LE F p (where

a^b = ^(a(. . . (a^ b) . . .)) and a b = lim a b) satisfies (22).

FT^times n^°°

Also, note that because the LE

Y = Ax: (Ay: x(yy))(Ax: x(yy))

has the property

Ya ^ a(Ya) (23)

for all a, the LE YF is another solution of (22)

,

To reduce an LE containing A, we may, under this latter

interpretation of the definition (19) , replace A by a solution

of (21) , and then apply a sequence of contractions. The results

of reduction under this interpretation and the ones under the

previous interpretation (of using (19) as a reduction rule) may,

in general, be expected to be different.

Now let us define a partial order on LE ' s as follows:

a £ b (a is extended by b) , if for all c it is the case that

whenever ca has a normal form, then ca = cb. For example,

we have Q < h for all LE ' s b, where Q. is as introduced in
00

Sect. 2.8. One can show [14] that F fJ , as well as YF, are

minimal solutions of (22) , that is, they are extended by all

LE's satisfying that relation. It turns out that, for all LE '

s

containing A, the normal form reductions resulting from the

-23-

replacement of A by a minimal solution of (21) in thi second

interpretation are precisely the same as those resulting under

the first interpretation of using (19a; as a reduction rule.

It is natural, therefore, to identify the LE A defined by (19)

with a minimal solution of (21). Although, in general, (21)

has infinitely many, mutually non-conver'cible , minimal solutions,

these solutions are equivalent in the sense that they are all

extended by each other, and have the same intuitive interpreta-

tion as functions. Hence, we arbitrarily adopt one of these,

YF, with F as defined earlier, as the minimal solution.

Sometimes, minimal solutions are expressed in the "y-notation"

[17J : we write the minimal solution of (21) as the y-expression

yx;

The y-expressions resemble A-expressions in variable binding

properties; and they have the associated rules

yx: e -^ yy : (Ax:e)y (24)

yx: e > (Ax:e) (yx:e) (25)

The first rule simply renames the "y-bound" variable, while

the second becomes obvious in view of the fact that being a

solution of X = e = (\x:e)x, the LE yx:e must itself satisfy

this conversion relation for x.

The above interpretations can also be generalized to include

the simultaneous recursive definition of several LE ' s in the

form

^1 = FA ••• \ '

A = F A- . . . A^
n n 1 r

(26)

where, it is understood, the LE ' s F's do not involve A's.

The generalized interpretations are, briefly:

(a) The definitions (26) may be regarded as a set of

reduction rules (replacing = by ->
) without concern

as to the values of A's.

(b) The A's defined by (26) may be regarded to be the

-24-

minimal solutions of the system of conversion

relations

A^ = F.Aj^...A^, lj<i<n. (27)

An explicit soluion of (27) is given by

A. = Y. F, . . .F ,

1 1 ,n 1 n
where

Y. = AZt...z : Y(Ax: <xZt,...,xz >)(Ax,...x :x.) .

i,n 1 n I'n 1 ni
Alternatively:

(~)
A. = A. I

where
(0) (J+1) (J) (J)

A. ' S Q , and A. EF-A^.-.A .

1 1 1 1 n

The interpretations (a) and (b) result in identical normal

form reductions of the LE's containing A's.

3.2. Iteration Statements

The representation of the for statement of ALGOL 60 is

obtained by expressing this statement in terms of the simple

(non- ALGOL 60) while loop of the form while ... do

To represent the latter, consider the statement while b do S

appearing in the environment (v, ,...,v). Calling this state-

ment by the name T, we may (recursively!) describe it, for the

purpose of LC representation, as

if b then begin S ; T end

Now the formulas for the representation of compound and condi-

tional statements, (5) and (16), respectively, are applicable

to the above statement, so that its representation {t} is,

recursively, the LE

A4)V,...v : {b}((A4): {S } ({t}(J))) ())V, . . . v)(4)V,...v)

= A(t)Vj_. . .v^: {b} ({S} ({T}(i)))(J)V^. . .v^ .

-25-

Thus, we adopt the representation

{while b do S}, „ \
= V^^- A4)V^...v : {b} { {S } (x({))) ((>v^ . . . v ,

1 n
(28)

Alternative definitions of the same LE , call it A, are

A = A(})V, V : {b} ({S} (A(}))) (])V^. . .v^ ,

A = Y{Xx^v^. . .v^: {b} ({S} (xcj))) (})Vj^. . .v^) .

Example . At this point, we illustrate the LC representations

introduced so far by means of a complete program. Also, as an

application of the model, we derive the correctness of the

program in terms of its representation. Given below are the

individual statement representations, shown on the same line

as the statements (or on the last line for multiple line

statements) , and have been designated names for reference

purposes.

A = A<j)xyoi :(t)iyo

B = A())xy : 4)xO^

C = A(|)zxy : 4)0^xy

D = X(})zxy :(t)zx l+y+2x z

E = X4)zxy:()) z+1 xy

F = \<t>: D(E(}))

G = X(j)zxy: z<x (F (G<|))) (})Zxy

H = X(i): C(G(Az:(())) f2

J = A({)xyo:(j)xyo,y

K = A((): A(B (H(J(Axy :<})))))Qi^

{program} s P = KII

begin integer x.

We wish to prove that on reading a nonnegative integer n,
2

this program will print out the integer n . According to our

input-output conventions, we need to show that

2
P n -> <n_> , for all integers n >^ . (i)

This is done in four steps, as follows.

(a) We show that for all LE <j) and all integers n and i,

2 2
G

(J)
i^ n j^ ^ 4* i. D. i_ / if i >^ n , (ii)

2 2
G (J)

i n i^ ^- G4) i+1 n (i+1) , if i < n . (iii)

By using the definition of G, we obtain

2 2
G

<i>
i n i^ ^ i < n (F(G(J))) (j) i n i

If i >^ n , then i < n ->- false , so that (ii) is immediate.

Otherwise, i < n ^ true, and the above LE

^ F(G<f))i n i^ -V D(E(G(})))i n i^

^ E(G(}))in 1+i +2x1 -v E(G(})) i n (i+1)

->
G(J) i+1 n (i+1) .

(b) Next, for all integers n and i such that < i _< n,

we have

2G(t)OnO^G(t>ini_ . (iv)

This is proved by induction on i. From (iii) one easily

verifies (iv) both for i = 1, and for i = j + 1 _< n when the

case for i = j < n is assumed.

(c) Next, we claim that for all integers n >^ , it is

the case that

H(j)np->4)nnr. (v)

For, we have

-27-

H(t)nq E (A(J): C {G{Xz :<^)) Q) <i>
n

-V C(G(Az:(})))^ n

H- G(Az:()))0 n

Now if n = 0, then from (ii) it follows that

2 2
G(Az:(J))0 n ^ (Az:(l))n n n_ ^ (}) n n_ .

On the other hand, if n > 0, then for the case i = n, (iv) yields

G(Xz:(t))0 n ^ G(Az:(())n n n_

2
-> (Az:({))n n n_ , by (ii)

2
->-

4) n n_ .

(d) Finally, to prove (i) we simply use the definitions of the

LE ' s A through P, obtaining, for all integers n >^ ,

PnEKIIn-^ A(B(H(J(Axy:I))))nS^In

-> B(H(J(Axy:I)))n fi I

-^ H(J(Axy:I))n I

2
-^ J(Axy:I)n n_ I , by (v)

2 2> (A xy : I) n n_ I ,n

-> I ,n

2
-> <n > .

-28-

Returning to the discussion of iteration statements, we can

express the general for statement of ALGOL 60 in terms of the

simple while loop treated above. For example, we can reformulate

the statement

fo r V. := e, step q^ until eo do S

as

begin v. :=e, ; while (v.-e.,) xsign(e„) < do

begin S ; v. := v.+e2 end end . .::•:'

The latter form can then be represented as an LE by employing

the representations of compound and while statements. Omitting

the detail"^ of derivation, we list below the LC representations

for the three cases of for list elements, namely, arithmetic

expression, while element, and step-until element:

{for V. = e do S} , .

1 — (v^ ,. . . ,v„)
1 n '

s A(})V,...v : {S }(J)V, . . . V. _, {e}v. , . . . V . (29)

{for V. := e while b do S } , >

1 — (Vj^,...,V^)

= yx: A(})V, . . .V : (Xv. : {b }) {e} ({S } (xcj))) ())V, . . . v. _^{e}v^_i_^ . . . v^ (30)

= Y(Ax(t)V, . . .V : (Av. : {b}) {e} ({S} (x(}))) <})V, . . .v._j^{e}v^_i_, . . .v^)

{for V. = e, step e- until e, do S} , >

= A(t)V,...v : (Y (Axcbv, . . .V : { (v. -e,)x sign (e„) < 0}^1 n 1 n ij 2. —

({S}(Av,...v :x(()V,...v. , {v.+e-Iv. ,
, . . .v^))

1 n 1 i-i 1 2. 1+1 n

(j)V, . . .v^)) (f)VT . . .V. 1 {e, }v.
, T

. . .V . (31)
1 n 1 1-1 1 1+1 n

-29-

3 . 3 Jumps and Labels

To execute the statement S s goto L, we may, in effect, siobsti-

tute the part of the program following L for the one following S.

This observation is the basis of our representation of both labels

and jump statements.

A label is identified with the part of the program following

it. To be accurate, the representation of a label L occurring

in a program P is taken to be the representation of the program

P' obtained from P by deleting all the statements, but retaining

the declarations, that appear above L. This representation can

be obtained in a simpler manner by using the following inductive

scheme: Let the label L occur in a block b whose declared

variables are v, , . . . ,v .

1 n

1) If L is followed by statements S, , . . . ,S , and a label M,^ 1 m
in that order, all within b, then

{L} s {S, }({S„}(... ({S^}{M}) ...))12 m

2) If S, ,S„,...,S are the statements following L to the12m ^

end of b, then

{l} S {S^}({S2} (. .. ({Sj^}(AVj_. . .v^:N)) . . .)) ,

where N e l, if b is the outermost block, else N is the

representation of the program part following b, that is,

of the (possibly imaginary) label immediately after the

end of b.

According to the rules of ALGOL, the label to which a jump

can be made must be in a block which is the same as, or outer to,

the block containing the jump statement. It follows that (the

list of variables constituting) the environment of a jump state-

ment must contain the environment of the referred label as a

final segment. Suppose (v, , . . . ,v) is the environment of the

statement S s goto L, and (v ,...,v), where 1 £ m £ n, is

the environment of L, and let (j) represent as usual the program

-30-

remainder of S. The execution of S causes the program to

compute the function {l} (v ,...,v) instead of (})(v. ,...,v)

Hence, the representation of S can be taken to be the LE

which reduces to

AAv, ... V : {L}v ... V ,^1 n m n

X<i)V^ . . . V , : {l}
1 m-i

Thus, we define

{ goto L , environment (L)= (v,...,v),l£m_<n}, ,

1 n

= A(f): (Av^. . .v^_^: {L}) . (32)

It is sometimes convenient, specially in connection with

conditional statements, to write the right-hand side LE in

the convertible forms

Xi)V, . . .V : {l}v ...V or A4'V,...v : (Av,...v ,:{l})v,...v .^In mn ^Inl m-1 1 n

Example . The representation of goto statements and labels is

illustrated by means of a complete program. The program below

has been derived from the program given in the previous example

simply by expressing the while loop in terms of goto ' s . As

another application of the model, we prove the (input-output)

equivalence of the two programs.

As before, the representations of individual statements are

shown on the same line as the statement, or on the last line for

a multiple-line statement, and are designated identifying names.

The LE ' s common to the representation of both programs have the

same names. Label representations are given at the end. (The

superfluous label M serves simply to illustrate the case (1) of

label representations discussed above.)

-31-

begin integer x,y;

read x; A = A(})xyoi :(j)iyo

y := 0; B = X(J)xy :<J)xO^

begin integer z;

z := 0; C = A(f)zxy :(t)0^xy -> A(j)z: (pO_

L : i_f z=y then goto N

else goto M; D'e A(()Zxy: z=y (Az:N)Mzxy

M: y := y+2x z+1

;

E'

=

X(t)Zxy :(})zx y+2x z+1

z := z+1; . F'= A(j)Zxy:(}) z+1 xy

goto L G' =
A({) : L

end; E'

=

A(t): C (D' (E ' (F ' (G" (Az :(()))))) fi

N: write y; J = A(f)xyo:4)xy o,y

end K'= Ac}): A (B (H ' (J (Axy :(}))))) f2J^

{Program} E P' e K'll

L = D'M , M E E' (F* (G' (Az:N))) , N E J(Axy:I)

We wish to prove that the above program and the program of the

previous example produce the same output when executed with the

same non-negative integer as the input datum. That is, in terms

of their representations, we wish to show that for all integers

n >_ 0,

P n = P'n . (i)

Of course, this can be shown by using the previously obtained result
2

Pn -^ <n > m conjunction with a direct proof of the fact that
2

P'n ^ <n > . But we will prove the equivalence of the programs by

verifying, in effect, thattheir differing parts do the same work

when the programs are executed. These differing parts are

represented by the LE ' s H and H'. If we can show that for all

integers n >^ ,

H N n = H'N n (ii)

(where N e j(Axy:I), defined in the present example), then (i) is

demonstrated as follows. From the previous example, part (d)

,

we know that for all n > 0,

-32-

P n -> H(J(Axy :I))n I
,

= H N n I .

Since P and P' differ only with respect to their components H and

H", respectively, we must also have for all n >^ ,
,

P'n -> H'N n I .

Hence, P n = P'n by (ii)

.

It remains to verify (ii) . From (v) in the previous example,

we have for all integers n >_ ,

2HNnO^Nnn .

So (ii) would follow if we can also prove

2H'NnO->Nnn_. (iii)

To outline the proof of (iii) , we simply state the sequence of

reduction relations leading to it.

(1) L i n i^ -^

N n n_ , if 1 = n ,

2
L i+1 n (i+1) , if i 7^ n .

(2) LOnO->Lini3., for < i <_ n

2
(3) LOnO->Nnn_ , for n >_

2
(4) H'4) n •> N n n_ , for n >_ .

The treatment of designational expressions and switches is

omitted, except for an example which should suffice to indicate

how these can be represented as LE ' s . In the schematic program

below, b and c denote Boolean, and e and f, arithmetic expressions,

-33-

begin integer x;

M: ...

begin integer y;

begin integer z

;

switch S := K, if b then Sle] else L, M;

• • •

K: ...

begin integer w ; ,

* * *

goto if c then M else S I f]

;

end w

;

— ' .

.

end z

;

L : ...

end y;

end

The representations of the switch and goto statements in

the above program are, respectively,

S = <K, b(Xzyx: S [e] ^zyx) (Az :L) , Azy:M> ,

A(})wzyx: c (Xwzy :M) (Aw: S[f]-,) ,

where, for brevity, underlined letters are used to designate

corresponding representations, and the LE (elem i n)

(Cf. Sec. 2.12) is written [ij .— n

-34-

.4. PROCEDURES

r
"

4 . 1 Functions

We use the term function to denote a type procedure without

any side effects. In particular, a function is a procedure in

which

(1) a value is associated with the procedure name,

(2) all parameters are called by value,

(3) no global variables are modified,

(4) no jumps are made outside the function body, and

no procedures are used other than functions.

Because of the above restrictions, the representation of functions

is much simpler than that of general procedures . Since many

procedures encountered in programs are truly functions, it seems

useful to deal with them as a special case.

For the moment, let us consider only the functions which do

not involve global variables at all. For these, the environment

of the function declaration is immaterial. Let f(p, ,...,p) be

such a function with parameters p.. We wish to represent f in

such a manner that for all expressions e,,...,e

{f }{ej^}. . . {e^} ^ f (e^^, . . . ,e^) (i)

Such a representation is accomplished as follows: We use a

variable it to denote the function value; that is, all assign-

ments to f are represented as if made to it. Further, we

represent the statement S constituting the body of f by taking

its environment to be ('T,Pi , ' • ' ,p)• Now, starting with an

arbitrary value of tt, and the values e. of p. , the execution

of S has the effect of assigning the value f(e,,...,en) to tt ,

and certain values to p. which are irrelevant to the result;

say, we have

{s}(j)TT{ej^} . . . {e^} -^
(}) f (e^^, . . . ,e^) P3_---Pn • (^i)

-35-

Comparing (i) and (ii) , we can choose the LE Airp . . .p :it for
(J)

,

Q. for IT, and {S}(})7t for {f}, so as to satisfy (i) . Thus,

we adopt

{ function f (p, , . . .p) with body S}e{S}, . (Airp, . . .p :it) J

j_ n V'i^,p^,..»pj X n

, ,u:i. -zAr: : . :j
I... (33)

It should be pointed out thvt a label appearing in the body of

a function is to be represented as the part of the function (not

the program) that follows the label.

Example . The following procedure is a function; hence (33) is

applicable.

integer procedure mod(x,y); value x,y; integer x,y;

begin integer q;

q := x-Jy; < A = A())qTrxy :(j) x^y TTxy

mod := x-yxq B = A(|)qiTxy : (l)q
x-yxg xy

end q C = A(j): A (B (Aq :()))) Q .. _

end mod; mod = C(ATTxy:TT)fi

Example . Simplification of a function representation.

integer procedure fact(n) ; value n; integer n;

fact := i_f n £ then 1 else n x fact(n-l) ;

In this case, we have

{body} = A(t)7rn: (\) (n=0 1 (n x (fact (n-1))) n

fact E {body } (Aftn :it) f2

^ An: n=0 1 (nx (fact (n-1))

)

,

so that, alternatively,

fact E Y(Azn: n=0 1 (nx (z(n-l))

)

) .

-36-

Finally, it is easy to lift the restriction about global

variables imposed earlier on functions: All one needs is to

treat each variable in the environment of a function declaration

as a parameter, in addition to the explicitly declared parameters

of the function. This is illustrated below.

Example .

begin integer x , y

;

integer procedure f(n); value n ; integer n;

f := n+x; A = AcJjTrnxy :
(J)
n+x nxy

... f = A(Airnxy : tt) fi

begin integer z;

X := f(y)+z A(()zxy : ({)Z (fyxy) +z y

4 . 2 Call-by-name, Side-effects

In the previous section, we have described the LC representa-

tion of procediores subject to rather stringent conditions. We

will now show how the representations can be extended to more

general procedures, allowing call-by-name, the use of global

variables, and side effects. However, we limit ourselves here

to considering the formal paramters of the type integer and label

only. But the extension of the model to include real and boolean

parameters is trivial.

In ALGOL 60, a procedure call is intended to have the effect of

an appropriately modified copy of the procedure body [12]. The

modification in the case of call-by-name consists in replacing each

instance of a called-by-name formal parameter by the corres-

ponding actual parameter. (It is understood that any name

conflicts between the variables appearing in the actual parameter

expressions and the local variables of the procedure are to be

first removed by renaming the latter variables.) Instead of

performing such symbolic substitution, however, which would require

-37-

keeping procedures in text form at the execution time, ALGOL

compilers accomplish the same effect by treating formal parameter

references in procedure as calls on special "parameter procedures"

generated from actual parameters [22]. As a result, if an

operation refers to a formal parameter during the execution

of a procedure, then the procedure execution is suspended to

evaluate the corresponding actual parameter in the environment

of the procedure calling statement , and then the procedure

execution is resumed using the so-acquired value in the operation.

Of course, depending upon the type and use of a parameter, the

actual parameter evaluation may yield a value (e.g., an arithmetic

or Boolean quantity when the formal parameter is an operand in

an expression) or a name (e.g., the address of a variable when the

formal parameter appears to the left of an assignment statement.)

Our LC interpretation is based on a similar idea. But we make

use of different "parameter procedures" for different operations

performed with the same parameter; namely, the evaluation of

actual parameter expressions , making assignments to the variables

provided as actual parameters, and jump to an actual label.

4.3. Integer Parameters '

In the absence of procedures we were able to express each

statement in a program as a function which had for its arguments

the variable tj) , denoting the program remainder (that is, the

part of the program following the statement) , and the variables

constituting the environment of the statement. Clearly the

representation of a statement S in a procedure body would

involve two sets of program remainders and environments — namely,

one set for S itself and one for the statement, say T, that calls

the procedure. The program remainder of T corresponds to the

familiar "return" address or label for the procedure call. Now,

any formal parameter instances in S give rise to actual

parameter evaluations in the environment of T, but after the

evaluation the control must eventually transfer back to S.

-38-

Hence the representation of parameter evaluation also involves

the two sets of environments and proc/ram remainders; but this

time the program remainder of S serves as the return address.

We will use the variable p to indicate the program remainder

at the return point and t}) , as usual, for the program remainder

at the current point.

We have so far represented, and will continue to represent,

each program variable by a single LC variable. The representa-

tion of an assignment statement may be conceived as "binding"

the LC variable representing the variable appearing at the

left-hand side to the representation of the right-hand expression.

In general, the LC variables representing program variables are

"bound" at any time to the current values of the corresponding

program variables. With each called-by-value formal parameter

we similarly need to associate a single LC variable, bound to

the current "value" of the parameter at any time. However,

we need to carry more information with a called-by-name formal

parameter; depending on the type and use of a parameter we shall

associate a number of LC variables with it. For each called-by-

name formal parameter of type integer, we require three variables

best thought of as being bound, respectively, to the "value"

associated with it and to the "parameter procedures" for

evaluating it and making assignments to it. If p is an integer

parameter, then these three variables will be usually denoted

by P/ Pp ' ^^"^ P • (The parameter of type label will be

discussed later.) The environment of a statement in a procedure

body will consist of the following, in the given order:

a) variables local to the procedure,

b) p , the return variable,

c) variables representing the formal parameters,

d) variables global to the procedure.

The present descriptive use of "binding" and "bound" has no
connection with the terms defined at the beginning of Sec. 2.1,

-39-

Next, associated with each called-by-name actual parameter p

of type integer, and individual to each procedure call , is an

LE that represents the parameter procedure for its evaluation;

in case p is a program variable (rather than an expression)

,

there is also another LE which represents the "parameter procedure"

to effect assignments to p called for in the procedure. These

"actual evaluation" and "actual assignment" operators are usually

denoted e and a , respectively, with further distinguishing

marks added when more than one procedure call is involved.

Lastly, associated with each called-by-name formal parameter of

type integer, and unique to each environment within the procedure

body , are two LE ' s which represent the calls on the "actual

evaluation" and "actual assignment" parameter procedures mentioned

above. For convenience, these LE ' s are referred to as "formal

evaluation" and "formal assignment" operators, and are usually

denoted e and a where p is the formal parameter, with
P P

further distinguishing marks added if more than one environment is

involved. If, in a statement in a procedure body, a formal

parameter appears as an operand of an expression, the statement

will be represented as if preceded by a formal evaluation;

likewise, if a formal parameter occurs at the left-hand side

of an assignment statement, that statement will be represented

as if immediately followed by a formal assignment.

The above ideas will now be illustrated by means of a very

simple example:

begin integer a;

procedure P (x) ; integer x; x:=x+2;

P (a) ;

end .

The body of the above procedure consists of a single statement,

and that statement needs to be both preceded by a formal evalua-

tion and followed by a formal assignment. Thus, it is represented

by the compound

-40-

X(j): e^(A(a^4))) = B ,

say, where A is the representation of x:= x+2 as an ordinary

assignment statement. Since there are no local variables in

the procedure, the environment of this latter statement consists

of the following:

p the "return" variable,

X the "parameter evaluation" variable,

X the "parameter assignment" variable,

X the "parameter" variable, and

a the global variable.

Thus we can write

A = AApx X X a: (bpx x x+2 a .

Now, as the variable x is bound to the "actual evaluation"
e

operator, and the "formal evaluation" consists of just an applica-

tion of this LE , we define e to be

or more simply.

XApx X xa: X pcbx x xa ,

XApx X X : X pAx x x

Note the interchange of <p and p above; this signifies that the

program remainder at the return point of procedure call becomes

the current program remainder during parameter evaluation,

and vice versa. In a similar manner, we define

a = Acbpx X X : X pAx x x

(In general, the global variables of the procedure need not

appear in the formal evaluation and assignment operators.)

The whole procedure may be represented by

P E B (Apx X x: p) ,

which displays the effect that once the procedure execution

is over, (after the application of B) , only the return variable

-41-

is retained, and the other variables, namely, the ones connected

with parameters, are deleted from the environment.

Next, let us look at the procedure call. There is only one

called-by-name actual parameter of type integer in this case.

So we need to define two LE ' s e and a , the actual evaluation
X X

and assignment operators. These serve essentially as the fictitious

assignment operators x:=a and a:=x, repsectively , and thus can

be defined by

e = Acbpx X xa: pd)x x aa ,X ^ e a e a

a = Actpx X xa: pAx x xx .

X ^ e a e a

Again the interchange of <j) and p is needed to represent the fact

that after evaluating the actual parameter in the environment of

the procedure calling statement, the control passes back to

the procedure body.

The purpose of the procedure calling statement itself is

threefold

:

a) to extend the environment from (a) to (x ,x ,x,a)

b) to initialize the added variables; that is, substitute

e for x , a for x , and, by convention, Q for x.
X ex a -^

c) to apply P before the rest of the program; that is,

substitute P(J) for (J).

Consequently, the statement P (a) above may be represented by the LE

(Ax X x: (Ad)a: Pcbx x xa)) e a il ,

which simplifies to

Acba: PAe a Qa
^ X X

It should not be difficult to see that coroutines can be
represented by using the same idea, as follows: The "remainder"
of each coroutine may be represented by a different variable.
The coroutine calls are then representable by LE ' s which simply
permute these variables to bring the remainder of the called
coroutine in front. We will soon see how we can also account
for the private variables of a coroutine by "covering" them when
the control passes out of it and "uncovering" them on return.

-42-

We now list the representations discussed piecemeal above

along with the original program.

Example .

begin integer a

;

procedure P (x) ; integer x;
f

e = Actpx X x: x pAx x x

a = XApx X x: X pcbx x x
X ^"^ e a a e a

X := x+2 A = A(t)px x xa : (Jjpx x x+2 a

B E Xcf): el{A{al<^))

; PEB(Xpxxx:p)
' ^ e a

P (a) ; C = A(j)a: P(})£ a f2a

... e^ E AApx X xa: p^x x aa
X ^^ e a e a

a = Acbpx X xa: pAx x xx
X ^ea ea

end

Next, let us consider the LC representation of type procedures

in which a value is associated with the procedure identifier.

In this case we will use an additional variable tt to denote the

procedure value in representing the statements of the procedure

body. The representations are otherwise similar to that for

routine type procedures discussed above. A procedure call which

uses the function designator of a procedure within an expression

will be represented as if it were compounded of two statements —
the first a procedure call to obtain the value of the procedure,

and the second using that value in the expression.

The representation of a type procedure is shown in the

following example, which also illustrates the treatment of call-by-

value in our present scheme of procedure representation. (Some

explanations follow the program.)

-43-

Example

begin integer u,v;

integer procedure P (x,y) ; integer x,y ; value y

;

f

begin

P := x-y;

X := y

end compound

end P

;

e = AApTTx X xy: x pcbirx x xy

a = Ad)pTTX X xy : x pctirx x xy

A = X(^p-nx X xyuv: (J)p x-y x x xyuv

B = X(^: e^(A(())

C = AcjjpiTX X xyuv: (j)p7Tx x yyuv

D =
X<t>: C(a (f))

E = X(f>: B(D(J))

P = E(ApTTX X xy : pu)

u := P (v,u+l) + u;

end

A<})uv: P(^Qe a Q u+1 uv

X
a

A(J)pTTX X xyuv: pcfjirx x vyuv

a = A4)pTTX X xyuv: p(()7rx x xyux

G = A(})iTuv: ({) TT+u v

H 5 A(}): F{G(})) .

The environment of the statements in the procedure above consists

of eight variables: namely, the return variable p, the procedure

value variable tt , the three variables , and X for the
e a

called-by-name parameter x, the single called-by-value parameter

variable y, and finally the two global variables u and v. Of these

the four parameter variables are effectively discarded at the end

of the procedure body execution by the representation P of the

procedure. The procedure call is represented as the compound of

two statements F and G: F computes it, the procedure value, and

G makes use of this in the assignment statement.

44-

In bot±i previous examples, the environment of the procedure

declaration and the procedure call are the same. In the general

case, these environments may be different; this is so, for

example, when a procedure call takes place in a block inner to

the procedure declaration. When this happens, there arises

the problem of "covering" the local variables of the calling

point that do not have valid declarations in the procedure body.

Of course, the covering should be such that the variables may

be "uncovered" on return to the calling point. Notice the

contrast with jumps in which the variables that do not have

valid declarations at the jump label are simply discarded

permanently. Covering is also needed in specifying the formal

evaluation and assignment operators for use with statements

inside a block in a procedure body, since in this case, again,

the variables local to the procedure body are invisible at the

calling point.

The following example shows a way of covering the non-

overlapping parts of the environment, in order to overcome the

environment conflict problem. (See explanations below.)

Example

begin integer x;

procedure P (y) ; integer y;

begin integer z

;

z : = y+ 3

;

e^ = X(t>zpY^Y^y: py^ (Xi|j r^^cjiz) y^y^y

A E A())zpy^y^yx: cf) Y±l PY^Yq^Y^

B = X<i>: e^(A()))

end block

end P ;

C, say

P = C(Xpy^y^y:pI)

begin integer u;

P (u+x)

;

end
end

D =A(j)Ux: P (X<J;:i{;(})u) e Q^x

e^ = A({)Upy^y^yx: pl (Ai|i :ij;(})u) y^y^ u+x x

-45-

In representing the procedure call in the above example,

(Ai^:4;(J>u) is passed as the return point argument instead of (|)

,

thus covering u. The application of the former to any LE

uncovers u and restores the environment; e.g., in e , the

application is made to y , and in P, to I. Note that in the

representation of the procedure call, namely, D, we have used

Q for what would otherwise have been a ; this is so, because

no assignment can be made to the particular actual parameter

in this case.

The evaluation and assignment operators, both formal and actual,

have been defined above slightly differently than in the two

previous examples in which covering was not required. These

two examples are worked out once again so as to make the

treatment uniform whether or not covering is needed in a

particular case.

Example

begin integer a;

procedure P (x) ; integer x

;

e = Ad)px X x: px (AiIj : liid)) x x x

a = A(i)px X x: px (Ail; ripd)) x x x

x:= x+2 A = Actpx x xa: (bpx x x+2 a

; P=B(Apxxx:pI)

P (a) ; C = A(t)a: P (Aijj :ijj(l)) £ a Q,a

... e = A(i)px x xa: pi (Aip iij^cf)) x x aa
x ^'^£a '^'^'^'^ea
tj = Act)px^x^xa: pi { AiJj rijjc))) x^x^:

end

-46-

Example

begin integer u,v;

integer procedure P(x,y); integer x,y; value y;

e = X(()p7rx X xy : px (At|j : i|;(})) irx x xy

a = A(()pTTX x xy : px (AiJ; itjjt})) ttx x xy

begin

P := x-y; A = A({)pTTx x xyuv: <t>p x-y x x x y u v

B E Act): e^(A(}))

x := y C = A(()p7rx x xyuv: (()pTTx x yyuv

D =
Acf): C(a^(}))

end compound E e \^: B(D4))

end P; P e E(Apttx x xy : plir)

• • •

u := P(v,u+l)+u; F = A(t)uv: P (Ai|j : ijj())) f2e a Q u+1 uv

e EAcJjpiTX x xyuv:pl (Ai|j :4j(f)) TTx x vyuv

a =A(|)pTTx X xyuv: pi (Aijj :4;(J)) TTx x xyux
^ £ Ot t, uc

G = A(t)TTUV: 4) TT+U V

H E Acf): F(G()))

For subscripted variables occurring as actual parameters,

the actual evaluation and assignment operators are again chosen

so as to represent the fictitious assignments between the formal

and actual parameter variables. But now this involves the LE '

s

elem and replace introduced in the discussion of arrays

(Sec. 2.12). We will simply illustrate the representation by

means of an example.

-47-

Example

begin integer n;

begin integer array x [1 : n]

;

procedure P (u , v) ; integer u , v

;

begin

end P ;

begin integer y;

P(y,x[y])

end

end

end

For the above program, the representation of the procedure

calling statement P(y/X[y]) is the LE

A(j)yxn: F {X\l) -.^(py) e a Q e a i^ x n ,

where,

e = Aiypu u uv v vxn : pi (A^' : iptty) u u y v v v x n ,

a^ - ^<)>ypu^u^u v^v^v X n: pi (Xi/j : ijj(l)u) u^u^u v^v^v x n

ej = ^^yP^e^a^^e'^a^ ^ "' P^ ^^^^'^'^Y^ ^e^a^
v^v^(x(elem y n))

x n ,

a = Ai^ypu u uv V V X n : pi (Ai|j : ijj4)y) u u u v v v (x (replace y n v))n .

A procedure body may contain a procedure call, possibly a

recursive one, in which the formal parameters are used in actual

parameter expressions. And the parameters of the nested call

may themselves be called by name. The representation in such a

case requires covering of all the variables associated with the

procedure body, including the local variables, the return variable,

and the parameter variables. This is illustrated below.

-48-

Example

begin integer x;

procedure P (y , n) ; integer y , n ; value n

;

begin

end P

;

procedure Q (z) ; integer z

;

begin integer w;

P(z,x) ;

• • •

end Q;

end

If the representation of the body of the procedure P is A,

then the representation of P itself is

P = A(Xpy^y^yn: pi) .

The representation of the statement P(z,x) is

X(t>: e^(B(l)) ,

where e is the formal evaluation operator for z in Q , and
z

B represents the call on P , as follows:

B = A())wpz z z x; P (Aij; :i[i(})wpz z z)e a fix x ,

Gy = A(})wpz^z^z p-^y^y^y x: p^I (Atjj :ijj({)wpz^z^z)y^y^z x ,

a E Ad)wpz z z p^y y y x: p, I (X(l; riiiAwpz z y)y y y x .

-49-

The next example illustrates the representation of a procedure

calling statement in which an actual parameter itself consists

of a call on a procedure.

Example

begin integer x;

procedure P (r , s) ; integer r , s ; begin . . . end P

;

procedure Q (t) ; integer t ; begin . . . end Q;

begin integer y

;

, :

.

P(x, Q(y)) ;

end

end

Because the second actual parameter, Q(y), in the above

procedure calling statement P(x, Q(y)) does not require an

assignment operator, the latter statement is represented by

the LE

A())yx: P(A()):ij;<j)y)e a f^ e fl fix. -

The first actual parameter, x, poses no problem, other than

the covering of the variable y not visible to the procedure

declaration of P ; hence, we define

e = AAypr r r s s s x: pi (Aii» iilKfcy) r r x s s s x ,

a = AAypr r r s s s x: pi (Ail) :iiid)y) r r r s s s r .

For the second actual parameter, Q(y), things are slightly

more complex. (Note, however, that only an evaluation operator

is needed in this case; the assignment operator is undefined.)

First, we have to provide for a call on Q — which requires

covering all the variables associated with the call of P -- with

the following actual evaluation and assignment operators:

-50-

aj = A(i)ypr^r^r s^s^s p^ tt t^t^t x: p^I (A^j : 4j(})tpr^r^r s^s^s)ut^t^t x

Now, e^ is defined in terms of a call on Q, followed by an

assignment of the resulting value to s , as follows:

a a^
A = A(})ypr^r^r s^s^s x: Q (Aij; :4;(f)ypr^r^r s^s^s)Q e^a^Q x ,

B s A(t)ypr^r^r s^s^sttx: pi (Aijj : ij;(|)y) r^r^r s^s^tt x ,

e^ E A(|): A(B(j)) .

s

4 . 4 Label parameters

The representation of label parameters is actually much simpler

than of the integer variety. The reason is that two different

operations, evaluation and assignments, are possible with the

latter type; in addition, the value of the parameter at any time

has to also be carried along within the representation. In the

case of a label parameter, the only possible actual operation is

a jump to it. Thus, with each formal label parameter, p, we

need to associate only one variable, usually denoted by p ,

which is to be bound to the operator for effecting the actual

goto operation. (The variable p is an element of the environ-

ment of the procedure in which p is declared.) Next, associated

with each actual label parameter, and individual to each procedure

call, is an LE that represents the parameter procedure to effect

the jump to the actual label. For a parameter p, this "actual goto "

operator is usually denoted by y / with further distinguishing

marks added when more than one procedure call is involved. Lastly,

associated with each formal label parameter, and unique to each

environment within the procedure body, is an LE , the "formal goto "

operator, that represents a call on the actual parameter procedure,

that is, an application of the actual goto operator; the formal

-51-

goto operator for the parameter p is denoted y / again with

further distinguishing marks added if more than one environment

is involved.

For anyone who has followed the previous treatment of jumps

(Sec. 3.3) and procedures with integer parameters (Sec. 4.3),

the example below should suffice to explain how to represent

label parameters.

Example

begin integer a;

procedure R(v) ; label v;

goto v; A S Y^ E X(})pv : p v^ (Aijj ril^cf)) v

R = A(Xpv :pl) ^^

begin integer b

;

procedure P (x , z) ; integer x ; label z

;

e E Acbpx X X z : px {\\b zixb) x x x z
X ea Y£ e ci y

a E Ad)px X X z : px (A il; : iLid)) x x x z
X ^ea ya^ ^^ e a y

y = AApx X x z : pz (Ail; til;*) x x x z
'z ^*^ e a Y y e a y

R(z); B E Acbpx x xz ba: R(Aiii rilxbpx x xz b)y a
' ^ e a y ^

e a y 'v

a_ f
y = Acbpx X xz bpiV a: y cbpx x xz b a
'v ^ e a y 1 y '

z^^ e a y

begin integer c , d

;

P(d,L) C = Ac})cdba: P (Ai|; :4^(t)cd) e^a^f^y^ba

pi

e = Acbcdpx x xz ba:
X ^ e a y

pi (Alii :4;(bcd) x X dz ba

a E Acbcd p X X xz ba:
X ^ ^ e a y

pi (Alii : liicbcx) X X xz ba

y = Acbcdpx x x z ba: Lba
' z ^ e a y

end;

Xj : ...

end

end

-52-

5. CONCLUSION

By interpreting programming constructs intuitively as functions

rather than machine commands, we have succeeded in modelling

programming languages in pure lambda-calculus. We have been able

to provide a nonimperative , completely descriptive representation

of most of the important features of programming languages,

including assignments, jumps, and procedures involving call-by-

name and side-effects.

An immediate application of the model is in a simple semantic

specification of programming languages in terms of lambda-calculus,

achieving a standard of rigor that matches their syntactic

specification. Of more interest, however, is the potential of

this model in the study of properties of programs, in proving

program equivalence and correctness, and in program simplifica-

tion (source code level) and optimization (compiled machine code

level). Since we describe a program as a lambda-expression,

the above mentioned applications essentially reduce to transforma-

tions within lambda-calculus. The possibilities of some of these

applications have been indicated in the body of the paper by means

of examples.

-53-

6. REFERENCES

1. Hoare, C. A. R. , "An Axiomatic Basis for Computer Programming,"

Comm. ACM 12, 10 (Oct. 1969), 576-580, 583.

2. Burstall, R. M. , "Formal Description of Program Structure and

Semantics in First-Order Logic," Machine Intelligence _5

(ed. Meltzer, B., Michie, D.) Edinburgh Univ. Press (1970),

79-98.

3. Manna, Z,, Vuillemin , J., "Fixpoint Approach to the Theory of

Computation," Comm. ACM 15 , 7 (July 1972), 528-536.

4. Church, A., The Calculi of Lambda-Conversion , Princeton, 1941

.

5. Curry, H. B., Feys , R. , Combinatory Logic , Vol. I,

North-Holland, Amsterdam (1968)

.

6. Hindley, J. R. , Lercher , B. , Seldin, J. P., Introduction to

Combinatory Logic , Cambridge Univ. Press, London (1972).

7. Landin, P. J., "A Correspondence between ALGOL 60 and Church's

Lambda-Notation," Comm. ACM 8, 2-3 (Feb., March 1965),

89-101, 158-165.

8. Stratchey , C, "Towards a Formal Semantics," in Formal Language

Description Languages (ed. Steel, T. B.), North-Holland,

(1966) , 198-220.

9. Orgass, R. J., Fitch, F. B., "A Theory of Programming Languages,"

Studium Generale 22 (1969), 113-136.

10. Reynolds, J. C. , "Definitional Interpreters for Higher-Order

Programming Languages," Proc. ACM Conf . (Aug. 1972), 717-740.

11. Abdali, S. K., "A Combinatory Logic Model of Programming

Languages," in preparation.

12. Naur, P., et al. , "Revised Report on the Algorithmic Language

ALGOL 60," Comm. ACM 6 , 1 (Jan. 1963), 1-17.

13. van Wijngaarden, A., et al . , "Report on the Algorithmic

Language ALGOL 68," Numerische Math . 14 (1969), 79-218.

14. Morris, J. H., "Lambda-Calculus Models of Programming

Languages," Project MAC Report MAC-TR-57, MIT, Cambridge,

Mass. (Dec. 1968).

-54-

15. Manna, Z., Ness, S., Vuillemin, J., "Inductive Methods for

Proving Properties of Programs," SIGPLAN Notices 7 , 1 (Jan.

1972) 27-50.

16. Cadiou, J. M. , Manna, Z., "Recursive Definitions of Partial

Functions and their Computations," SIGPLAN Notices 1_, 1

(Jan. 1972) , 58-65.

17. de Bakker, J. W. , Recursive Procedures , Mathematical

Centre, Amsterdam (1972).

18. Rosen, B. K., "Tree-Manipulating Systems and Church-Rosser

Theorems," JACM 20 , 1 (Jan. 1973), 160-187.

19. Kleene, S. C. , Introduction to Metamathematics ,

van Nostrand, Princeton, New Jersey (1950).

20. Scott, D. , "Outline of a Mathematical Theory of Computation,"

Proc. 4th Ann. Princeton Conf. on Info. Sci. and Sys . (1970)

,

169-176.

21. Scott, D. , "Lattice Theory, Data Types, and Semantics," in

Formal Semantics of Programming Languages , (ed. R. Rustin)

,

Prentice-Hall, New Jersey (197 2) , 65-106.

22. Randell, B., Russell, L. J., ALGOL 60 Implementation ,

Academic Press, New York (1964).

-55-

This report was prepared as an account of
Government sponsored work. Neither the
United States, nor the Commission, nor any
person acting on behalf of the Commission:

A. Makes any warranty or representation,
express or Implied, with respect to the
accuracy, completeness, or usefulness of
the Information contained In this report,
or that the use of any Information,
apparatus, method, or process disclosed
In this report may not Infringe privately
owned rights; or

B. Assumes any liabilities with respect to
the use of, or for damages resulting from
the use of any information, apparatus,
method, or process disclosed in this
report.

As used in the above, "person acting on behalf
of the Commission" Includes any employee or
contractor of the Commission, or employee of
such contractor, to the extent that such em-
ployee or contractor of the Commission, or
employee of such contractor prepares, dis-
seminates, or provides access to, any infor-
mation pursuant to his employment or contract
with the Commission, or his employment with
such contractor.

-56-

PROF. E. ISAACSON
251 MERCER STREET

	cimsTR

