Journal of Computer Languages, Vol. 1, pp. 303-320. Pergamon Press, 1976, Printed in Northern Ireland

A LAMBDA-CALCULUS MODEL OF PROGRAMMING
LANGUAGES—II. JUMPS AND PROCEDURES

S. KAMAL ABDALI
Department of Mathematical Sciences, Rensselaer Polytechnic Institute,
Troy, N.Y. 12181, U.S.A.

(Received 15 August 1974 and in revised form 21 May 1975)

Abstract—The correspondence between programming languages and the lambda-calculus
presented in Part I of the paper is extended here to include iteration statements, jumps, and
procedures. Programs containing loops are represented by lambda-expressions whose com-
ponents are specified recursively by means of systems of simultaneous conversion relations.
The representation of call-by-name and side-effects in a program is accomplished without any
resort to the concepts of memory and address by making use of a numbser of variables in addition
to those declared by the programs; with the aid of these additional variables, the parameter
linkage operations can be simulated by pure substitution. The applicability of the model to

the problems of proving program correctness and equivalence is demonstrated by means of
examples.

Programming Language Semantics Lambda-Calculus Jumps Procedures Parameters
Call-by-name Side-effects Program Correctness Equivalence of Programs

INTRODUCTION
PART I of this paper dealt with the lambda-calculus representation of assignments, con-
ditional and compound statements, input-output, and blocks. The essential restrictions on
the programs representable by the rules presented in that part were the absence of loops and
of side-effects. These features will be considered now. (Although forward jumps and side-
effect-free procedures could be incorporated rather easily within the representation scheme
of Part I, their discussion was postponed until now in the interest of giving a unified treat-
ment of jumps and side-effects.)
The numbering of sections and formulas is here continued from Part I.

4. ITERATION AND JUMP STATEMENTS
4.1. Recursive definition of lambda-expressions
In dealing with program loops, we will need the recursive definitions of the form

2T 0]

in which an LE is defined in terms of itself. Much towards the precise understanding of such
definitions has been contributed, among others, by Morris [1], Rosen [2], and de Bakker
[3], who have built upon the pioneering work of Kleene [4] and Scott [5]. Referring the
reader to the cited work for a rigorous analysis of recursive definitions, we shall be content
here with some informal, intuitive comments.

One possible explanation of (i) is the following: As would be possible in the case of a
non-recursive definition, we allow the replacement of a component f in any LE by the
right-hand side of (i). In other words, we interpret (i) as a rule of reduction

i TN (i)

By a sequence of such reductions of fand the other LC contractions, it may be possible to
reduce an LE containing f to a normal form. It has been shown (e.g. Rosen [2]) that the
303

304 S. KaMAL ABDALI

Church-Rosser property holds with this broader sense of reduction also; consequently,
most other important properties of reduction, such as the uniqueness of normal forms and
the correctness of the standard-order reduction algorithm, are valid when the reduction
rules of form (ii) (with distinct left-hand sides) are admitted.

The interpretation of a recursive definition as a replacement or reduction rule certainly
enables us to use the definition mechanically. But what, actually, is the object that is so
defined? It is obvious that applying the reduction rule (i) to f itself cannot lead to an
““ordinary” definition—a non-self-referencing—description of £. However, such a definition
is possible if we regard (ii) as a reduction relation (not a rule) involving an unknown, and
regard f as a solution of (ii). To reduce an LE containing f, we may, under this latter
interpretation of the definition (i), replace f by a solution of (ii), and then apply a sequence
of contractions. Now, in general, (ii) may be satisfied by more than one solution, so that
we may have the choice of different explicit definitions for the same LE. There is, however,
no reason to expect that these different definitions of an LE are compatible to each other
or to the interpretation of the recursive definition as a reduction rule—compatible in the
sense that all reductions, which start with an LE having a recursively specified LE as a
component and which use the different definitions of the recursively specified LE, yield
the same normal form (if any). However, those solutions of (ii) for which the resulting
definitions of the LE f are compatible with the definitions of the first approach (of taking
(ii) as a reduction rule) have been characterized by Morris [1] in terms of the following
partial order on LE’s: For LE’s a and b we say that a is extended by b, in symbols, a < b,
if, for all LE’sc, it is the case that ca <> cb whenever ca possesses a normal form. (For
example, it can be shown that Q < b for all LE’s b, where L is as defined in (1).) Now, the
particular solutions of (ii) that we are interested in have the property that they are extended
by all solutions of (ii). In other words, for an explicit definition of the LE f specified by (1),
we can take a minimal solution of (ii) (with respect to <).

An explicit definition of the LE specified by (i) is

f=Yh,

where Y = Ax: (Ay:x(y))(Ay:x(3y)), and '
k= 2. coXosom e

is the abstraction with respect to the indeterminate x of the LE obtained from the right-hand
side of (i) by replacing fin it by x. It is easy to see that for all a, Ya — a(Ya), and hence
that f = Yh satisfies (ii). Morris [1] has also shown that this solution is minimal.

In general, (i) has infinitely many, mutually non-convertible, minimal solutions, which
are, however, equivalent in the sense that they all have the same intuitive interpretations as
functions. The choice of any one of these such as Yh is rather arbitrary. To leave this
choice unspecified, while emphasizing the minimality of the chosen solution, one may
employ the p-notation of de Bakker [3]. In this notation, the minimal solution of (ii) is
designated by the u-expression

e ol B O

where, the LE to the right of the colon is obtained from the right-hand-side of (i) by re-
placing f with the indeterminate x.
The above interpretations can also be generalized to include the simultaneous recursive

A lambda-calculus model of programming languages—II 305

definition of several LE’s in the form

h=kfie.. fa
(iii)
fn — hﬂfl B 'fn’
where f’s do not occur in h’s. The generalized interpretations are, briefly:
(2) The definitions (iii) may be regarded as a set of reduction rules (replacing = by —)
without concern as to the explicit values of f7s.
(b) The f’s defined by (iii) may be regarded to be the minimal solutions of the system of
reduction relations
f"'* h"fl .. 'f‘ﬂ’ 1 S i S n. (i\")
An explicit solution of (iv) is given by
ﬂEYi,n 1"'hm
where
Y‘_“ = ;121 o Z,,:Y(J.x:(le, taay xzn>)(1x1 e x,,:x;).
The interpretations (a) and (b) result in identical normal form reductions of the LE’s
containing fs.
4.2. Iteration sratemenrs y

The representation of the for statement of ALGOL 60 is obtamed by exprcssmg tJ:us
statement in terms of the simple (non-ALGOL 60) while loop of the form while . cion
To represent the latter, consider the statement while b do S appearing in the environment
(935 - . ., v,). Calling this statement by the name T, we may (recursively) describe it, for
the purpose of LC representation, as

if b then begin S; T end.

Now the formulas for the representation of compound and conditional statements, (4) and
(11) (Part I), respectively, are applicable to the above statement, and its representation r{J"}
is, recursively, the LE ; g
Aoy . . . v, {BH(A4: {S}({T}95))9501 . v..)(?501 ee t'n)
> 190y ... 0, M BYASIATIP 0 - . - v,

Thus, we adopt the representation
{while b do S}, ..., 12)
= px:Agoy . . . v {B}(S}(xP))do; . . . v,
Alternative definitions of the same LE, call it A, are
A =2 .. .0, BY{S}AP)dv, ... v,
A =Y(xdv, . .. v, BH{S}(xP))dovy ... 0,)

Example. At this point, we illustrate the LC representations introduced so far by means
of a complete program. Also, as an application of the model, we derive the correctness of
the program in terms of its representation.

306 S. KAMAL ABDALI

Statements Representations
begin integer x, y;
read x; a = A¢xyoi:piyo
y:=0; b = Adxy:¢x0
begin integer z;
z:=0; = Adzxy:$0xy
while z < x do
begin
yi=14y+2xz; d=Azxy:dzx(+(+1y)(X22))
z:=z+1 e = Adzxy:p(+z1)xy
end = Apid(ed)
end of while g = Adzxy:if (<zx) (f(gd))pzxy
end; h = A$:c(g(Az:¢))S
write y Jj = Apxyo:dxy(o;y)
end k = Aa(b(h(j(ixy $)) R

{program} = P = kIL

We wish to prove that on reading a non-negative integer #, this program will print out
the integer n?. According to our input-output conventions, we need to show that

Pn— (n?), for all integersn =>0. : @
This is done in four steps, as follows:
(a) We show that, for all LE’s ¢ and all integers n and i,
ghinit—dini, ifiz=n, (i)
ghinit—gdit+ln G+1)% fi<n - (i)
By the definition of g, we obtain
gini2—if (<ip) (f(gd))din i

If i > n, then (<i n) — false, so that (ii) is immediate. Otherwise, (<i n) — true, and the
ghoge LR ==~ TR s : e :

— flg)in i — d(e(g))in i* — e(gh)i n(+(+1 (X2 D)
—~e(ghin 1+i+2xi—e(gdin (+1?
—g¢i+1n (+1)"
(b) Next, for all integers # and i such that 0 < i < n, we have
g40n0—gdinis @iv)

This is proved by induction on i From (iii) one easily verifies (iv) both for i = 1, and for
i = j+1 < n when the case for i = j < n is assumed.

(¢) Next, we claim that for all integers n > 0, it is the case that
h¢n 0 — ¢n n’.)
h¢n 0 = (Ap:c(g(Az:¢))S2)¢n 0

— c(g(2z:4))@n 0
—g(iz:$)0n 0.

For, we have

A lambda-calculus model of programming languages—II 307

Now if n = 0, then from (ii) it follows that
g(z:¢)0n 0 — (Az:¢)n n n? — ¢n n2.
On the other hand, if #n > 0, then for the case i = n (iv) yields

g(Az:¢)0n 0 — g(Az:$)n n n?
— (Az:¢)nnn® by (i)
— ¢n n.

(d) Finally, to prove (i), we simply use the definitions of the LE’s a through k, obtaining,
for all integers n > 0,
Pn = klln — a(b(h(j(Axy:D)))R2In

— b(h(j(Axy T)))nQI

— h(j(Axy:D)n OI

— j(Axy:Dn n’1 by (v)

— (Axy:Dn n*(I;n?

— (I;n?)

— (n2).

4.3. Jump statements

We regard the execution of the statement S = goto L in a program as the substitution of
the part of the program following L for the one following S. This viewpoint provides us
with the representation of both labels and jump statements. - &

A label is identified with the part of the program following it. To be accurate, the
representation of a label L occurring in a program P is taken to be the representation of the
program P’ obtained from P by deleting all the statements, but retaining the declarations,
that appear above L. This representation can be obtained in a simpler manner by using the
following inductive scheme: Let the label L occur in a block b whose declared variables are
Biice o B

(@) If L is followed by statements S, . .. , S, and a label M, in that order, all within

b, then {L} = {S}({Sa}(. . . (S }HM}) ..). = :

(b) If S, Ss, - - . , S, are the statements following L to the end of b, then

L} = {S3({Sa}(. - - ((Sm}(R0y...2,:N). .),

where NV = L, if b is the outermost block, else N is the representation of the program
part following b, i.e. of the (possibly imaginary) label immediately after the end of b.
According to the rules of ALGOL, the label to which a jump can be made must be in a
block which is the same as, or outer to, the block containing the jump statement. It follows
that (the list of variables constituting) the environment of a jump statement must contain
the environment of the referred label as a final segment. Suppose (vy,...,s,) is the
environment of the statement S = goto L, and (v, ...,v,), where 1 <m < n, is the
environment of L, and let ¢ represent as usual the program remainder of S. The execution
of § causes the program to compute the function {L}(v,,, . . . , v,) instead of $(vy, . . . , v,).

Hence, the representation of S can be taken to be the LE

Aoy .. .o, {Lv,, ...0,,

which simplifies (by #-contraction) to
Advy . .. v, 3:{L}

308 S. KAMAL ABDALI

Thus, we define
{goto L, environment (L) = (v,,,...,0,), 1 <m < Mtoys..) (13)
= Ad: (Av; . . .0, 5:{L)).

It is sometimes convenient, specially in conection with conditional statements, to write

the right-hand-side in the alternative forms:
Advy...0. LYo ...0,,
Aoy .. .0, (Avy ... 0 {0y .. . D,

Example. The representation of goto statements and labels is illustrated by means of a
complete program. The program below has been derived from the program given in the
previous example simply by expressing the while loop in terms of goto’s. As another
application of the model, we prove the (input-output) equivalence of the two programs.

As before, the representations of individual statements are shown on the same line as the
statement, or on the last line for a multiple-line statement, and are designated identifying
names. The LE’s common to the representation of both programs have the same names.

The label M serves to illustrate the case (a) of label representations discussed above;
it is otherwise superfluous.

begin integer x,y,;
read x; a = Apxyoi:piyo
=0 . b= Adxy:ga0
begin integer z;
z:=0; ¢ = Mpzxy:¢0xy
L: if z=y then goto N
else goto M; d’ = Apzxy:if (=zp) (Az:N)Mzxy
M: y:=y42Xxz+1; € = Azxy:dzx(+(+y(x22)1)
z:=2z+1; [= Adzxy:¢(+2zDxy
goto L g =i¢:L
cend; K =Ipie@ (€ (f g UM
N: vrite y) J = Mdxyo:$xy(0;y) 1.2 = —
end TR DR Ry ¥ SH Y T P) (o - S
{program} = P’ = k'll _ :
sealdaat v LM - ¢ | '
M = &(f(g' (Az:N)
N = j(Axy:D).

We wish to prove that the above program and the program of the previous example
produce the same output when executed with the same non-negative integer as the input
data. That is, in terms of their representations, we wish to show that for all integers n > 0,

Pn<> P'n. @

Of course, this can be shown by using the previously obtained result Pn— (n2) in con-
junction with a direct proof of the fact that P'n — (n2). But we will prove the equivalence
of the programs by verifying, in effect, that their differing parts do the same work when the
programs are executed. These differing parts are represented by the LE’s k and . If we
can show that for all integers n > 0,

hNn 0> K'Nn0, (i)

T Sy

A lambda-calculus model of programming languages—II 309

(where N = j(Axy:I), defined in the present example), then (i) is demonstrated as follows.
From the previous example, part (d), we know that for all n > 0,

Pn — h(j(Axy:I))n O = ANn OL
But using the definitions of the present example, we also have
P'n=KkTn
— a(b((x(1xy X)) RQAn
— b(# (j(Axy:D)nQI
— K (j(AxyT))n O = K Nn OL
Hence, it follows from (i) that Pn «» P'n.

It remains to verify (ii). From (v) in the previous example, we have for all integers
n>0,

hNn 0 — Nn n.
So (ii) would follow if we can also prove
h'Nn 0 — Nn n (iii)
To outline the proof of (iii), we simply state the sequence of reduction relations leading to it.
Nn n? , if i=n,

Y onn-
® L’~9‘-"’{L:‘;r_1:_1(i+1)=, if i,
(b) L0n0—Lini?, for0<i<n.
(c) LO0n0— Nnn?, forn > 0.

(d) A'¢n 0 — Nn n2, forn = 0.
5. PROCEDURES

5.1. F-procedures

We use the term F-procedure to denote a type procedure without any side effects.
Specifically, an F-procedure is a procedure in which

(a) the procedure name is typed,

(b) all parameters are called by value,

(c) no global variables are modified,

(d) no jumps are made outside the procedure body,
() no procedures are used other than F-procedures.

Because of the above restrictions, the representation of F-procedures is much simpler than
that of general procedures. Since many procedures encountered in programs are truly
F-procedures, it seems useful to deal with them as a special case.

For the moment, let us consider only the F-procedures which do not involve global
variables at all. For these, the environment of the declaration is immaterial. Let fbean
F-procedure and p,, . . ., p, be its parameters. We wish to represent f in such a manner
that for all expressions e, ..., e

n

UHed - - A{en} > {f(ers o - -5 €})

Such a representation is accomplished as follows: We use a variable 7 to denote the

F-procedure value; that is, all assignments to f are represented as if made to «. Further,
3

310 ' S. KAMAL ABDALI

we represent the statement S constituting the body of f by taking its environment to be
(7, p1s « - - ,). Now, starting with an arbitrary value of 7, and the values e; of p,, the
execution of S has the effect of assigning the value f(ey, . . ., e,) to , and certain values to
P: Which are irrelevant to the result; say, we have

Sybrlest . e} > (S ers . . e}pr - . p (ii
To obtain (i) from (ii), we may initialize = with £2, and choose the LE idp, . . . P for ¢
and {S}¢m for {f}. Thus we adopt the following representation rule:
{F-procedure f(p,, ..., p,) with body S}
= {S}(a,ﬂl,....pﬂ}(ﬂ' TPy - . Pyim)S2. (14)
It should be pointed out that a label appearing in the body of an F-procedure is to be
represented as the part of the F-procedure (not the program) that follows the label.
Example.

integer procedure mod (x, ¥);
value x,y; integer Xx,y;

begin integer ¢;
q :=x+y; a = Apqrxy:¢(--xy)mxy
mod := x—yxgq b = Apgmxy:dg(—x(X yg))xy
end g; ¢ = Ad:a(b(lg:4))Q

mod = c(irxy:m)Q.
Example. Representation of the factorial function.
integer procedure fact (n); value 7; integer »;
fact := if n = O then 1 else n x fact (n—1);
As the body of this F-procedure consists of a single assignment statement, we have
{body} = A¢mn:¢((=n0)1(X n(fact(—n))))n.
Hence, the representation of the F-procedure is given by the recursively defined LE
fact = {body}(Amn:m)Q — An:(=n0)1(x n(fact(—nl))).
An explicit definition of the above LE is
 fact= Y(Azn:(=n0)1(Xx n(z(—nD)))).

Finally, it is easy to remove the restriction about global variables imposed earlier on
functions: In case the global variable values are used (but not, of course, modified) in an
F-procedure, we append the global variables to the actual arguments as if they also were
parameters in addition to the explicitly declared parameters of the F-procedure. This is
illustrated below,

Example.

begin integer x,y;
integer procedure f(n);
value n; integer n;
fi=n+x; a = Agmnxy:d(+nx)nxy
— J=a(Arnxy:7)Q
begin integer z;
x 1= f(y)+z; Adzxy :$z(+(fyxy)z)y

UL BS——

A lambda-calculus model of programming languages—1II 311

5.2. Call-by-name, side-effects

In the previous section, we have described the LC representation of procedures subject to
rather stringent conditions. We will now show how the representations can be extended to
more general procedures, allowing call-by-name, the modification of global variables, and
side effects. However, we limit ourselves here to considering the formal parameters of the
type integer and label only. The extension of the model to include real and boolean param-
eters is, of course, trivial.

In ALGOL 60, a procedure call is intended to have the effect of an appropriately modified
copy of the procedure body [6]. The modification in the case of call-by-name consists in
replacing each instance of a called-by-name formal parameter by the corresponding actual
parameter. (It is understood that any name conflicts between the variables appearing in the
actual parameter expressions and the local variables of the procedure are to be first removed
by renaming the latter variables.) Instead of performing such symbolic substitution,
however, which would require keeping procedures in text form at the execution time, most
ALGOL compilers accomplish the same effect by treating formal parameter references in
procedures as calls on special “parameter procedures” generated from actual parameters
[7]. As a result, if an operation refers to a formal parameter during the execution of a
procedure, then the procedure execution is suspended to evaluate the corresponding actual
parameter in the environment of the procedure calling statement, and then the procedure
execution is resumed using the thus-acquired value in the operation. Of course, depending
upon the type and use of a parameter, the actual parameter evaluation may yield a value
(e.g. an arithmetic or boolean quantity when the formal parameter is an operand in an
expression) or a name (e.g. the address of a variable when the formal parameter appears to
the left of an assignment statement.) Our LC interpretation is based on a similar idea. But
we are able to avoid the notion of address, and work exclusively with values, by making
use of a number of different “parameter procedures” for different operations performed
with the same parameter; namely, the evaluation of actual parameter expressions, making
assignments to the variables provided as actual parameters, and jump to an actual label.

5.3. Integer parameters

In the absence of procedures we were able to express each statement in a program as a
function which had for its arguments the variable ¢, denoting the program remainder (that
is, part of the program following the statement), and the variables constituting the environ-
ment of the statement. Clearly the representation of a statement S in a procedure body
would involve two sets of program remainders and environments—namely, one set for S
itself and one for the statement, say 7, that calls the procedure. The program remainder
of T corresponds to the familiar “return” address or label for the procedure call. Now,
any formal parameter instances in S give rise to actual parameter evaluations in the environ-
ment of T, but after the evaluation the control must eventually transfer back to S. Hence
the representation of parameter evaluation also involves the two sets of environments and
program remainders; but this time the program remainder of S serves as the return address.
We will use the variable p to indicate the program remainder at the return point and ¢, as
usual, for the program remainder at the current point.

We have so far represented, and will continue to represent, each program variable by a
single indeterminate. The representation of an assignment statement may be conceived as
“binding” the indeterminate representing the variable appearing at the left-hand side to the

312 5. KAMAL ABDALI

representation of the right-hand expression.t In general, the indeterminates representing
program variables are “bound” at any time to the current values of the corresponding
program variables. With each called-by-value formal parameter we similarly need to
associate a single indeterminate, bound to the current “value” of the parameter at any time.
However, we need to carry more information with a called-by-name formal parameter.
Depending on the type and use of a parameter, we shall associate a number of indetermin-
ates with it. For each called-by-name formal parameter of type integer, we require three
indeterminates best thought of as being bound, respectively, to the “value” associated with
it and to the “parameter procedures” for evaluating it and making assignments to it. If P
is an integer parameter, then these three indeterminates will be usually denoted by p, p.,
and p,. (The parameter of type label will be discussed later.) The environment of a state-
ment in a procedure body will contain the variables corresponding to all of the above
mentioned indeterminates; specifically, it will consist of the following in the given order:

(a) variables local to the procedure,

(b) p, the “‘return” variable,

(c) variables representing the formal parameters,
(d) variables global to the procedure.

Next, let us turn to the procedure call. Associated with each called-by-name actual
parameter p of type integer, and individual to each procedure call, is an LE that represents
the “parameter procedure” for its evaluation. In case p is a program variable (rather than
an expression), there is also another LE which represents the “parameter procedure” to
effect the assignments to p called for in the procedure. These LE’s, referred to as “actual
evaluation™ and “‘actual assignment” operators, are denoted &,% and &,¢, respectively, with
further distinguishing marks added when more than one procedure call is involved.

Last, let us consider the procedure declaration. Associated with each called-by-name
formal parameter of type integer, and unique to each environment within the procedure
body, are two LE’s which represent the calls on the “actual evaluation” and “actual
assignment” parameter procedures mentioned above. For convenience, these LE’s are
referred to as “formal evaluation™ and “formal assignment™ operators, and are denoted by
¢, and w7, where p is the formal parameter, with further distinguishing marks added if
more than one environment is involved. If, in a statement in a procedure body, a formal
parameter appears as an operand of an expression, the statement will be represented as if
preceded by a formal evaluation; likewise, if a formal parameter occurs at the left-hand
side of an assignment statement, that statement will be represented as if immediately
followed by a formal assignment.

The above ideas will now be illustrated by means of a very simple example in which the
declaration and the call of a procedure have the same environment.

begin integer y;
procedure P(x); integer x; x 1= x-+2;
yi=1;
P(y)

end.

T The present descriptive use of ““binding” and *bound”” has no connection with the terms defined at the
beginning of Section 2, Part I.

A lambda-calculus model of programming languages—-—II 313

The body of the above procedure consists of a single statement, and that statement
needs to be both preceded by a formal evaluation and followed by a formal assignment.
Thus, it is represented by the compound

Adie(a(x'¢)) = b,
say, where a is the representation of x:=x+2 as an ordinary assignment statement. Since
there are no local variables in the procedure, the environment of this latter statement
consists of the following:

p the “return” variable,
x, the “parameter evaluation” variable,
X, the “parameter assignment” variable,
x the “parameter” variable, and
»y the global variable.
Thus we can write
a = A$px XXy :$pxx(+x2)p.
Now, as the variable x, is bound to the actual evaluation operator, and the formal evaluation
consists of just an application of this LE, we define &7 to be
Appx XXy X, phx.x XY,
or more simply,
Appx 3 X X, phx X X. :
Note the interchange of ¢ and p above; this signifies that the program remainder at the

return point of procedure call becomes the current program remainder during parameter
evaluation, and vice versa. In a similar manner, we define

%, = Appxx.x:X, phx,x .
(In general, the global variables of the procedure need not appear in the formal evaluation
and assignment operators.)
The whole procedure may be represented by

P = b(Apxx.x:p),
which displays the effect that once the procedure execution is over, (after the application
of b), only the return variable is retained, and the other variables, namely, the ones connected
with parameters, are deleted from the environment.

Next, let us look at the procedure call. There is only one call-by-name actual parameter
of type integer in this statement. So we need to define two LE’s &,® and «,° the actual
evaluation and assignment operators. These serve essentially as the fictitious assignment
statements x:=y and y:=x (in the environment of the procedure call), respectively, and
thus can be defined by

&" = APpXX XY pPx XYY,

%% = Appx X Xy pPX XXX,
Again the interchange of ¢ and p is needed to represent the fact that after evaluating the
actual parameter in the environment of the procedure calling statement, the control passes
back to the procedure body.f

T It should not be difficult to see that coroutines can be represented by using the same idea, as follows:
the “remainder” of each coroutine may be represented by a different variable. The coroutine calls are then
representable by the LE’s which simply permute these variables to bring the remainder of the called coroutine
in front. We will soon see how we can also account for the private variables of a coroutine by “covering”
them when the control passes out of it and “uncovering” them on return.

314 S. KAMAL ABDALI

The purpose of the procedure calling statement itself is three-fold:

(a) to extend the environment from () to (x,, x,, %,)

(b) to initialize the added variables; that is, substitute &* for x,, 2 for x,, and, by
convention, for x.

(¢) to apply P before applying the program remainder; that is, substitute P¢ for ¢
Consequently, the statement P(y) above may be represented by the LE
(Axx.x:(dy :Péxx,xp))e, 20, R,
or, more simply, by
APy Pe o, 5Qy.

Putting together the representations obtained piece-meal above, and adding the ones

for the assignment and the block, we can now complete the representation of the program:
Example.

begin integer y;
procedure P(x); integer x;
&’ = Appx,x.x:X,phxxx
= Adpxx x:x,phxx%
X 1= x42; @ = Agpx.xxy:ppxx,(+x2)y

b = 1$:e;’ (a(x,'$))
P = b(Apxxx:p)
yi=1; c = idy:pl
P(y) d = Igy:Ppe ¢, *Qy
8" = APpx,x Xy phx X yy
@.® = Adpx.x,xy:pdx x xx
end e = Ad:c(d(ly:4)Q
{program} = II.

Next, let us consider the representation of type procedures in which a value is associated
with the procedure identifier. In this case we will use an additional variable = to denote the
procedure value in representing the statements of the procedure body. The representations
are otherwise similar to that for the untyped procedures discussed above. A statement in
which the function designator of a procedure is used as an operand of an expression will be
represented as if it were compounded of two statements—the first a procedure call to obtain
the value of the procedure, and the second using that value in the expression.

The representation of a type procedure is shown in the following example, which also

illustrates the treatment of call-by-value in our present scheme of procedure representation.
(Some explanation follows the program.)
Example,

begin integer u, v;
integer procedure P(x, »);
integer x, y; value y;

& = Idprxxxy:x phmx,x xy
o = Idprx x Xy x, phmx x xy

A lambda-calculus model of programming languages—II 315

begin
P :=x—y, a = Appmx x,xyuv:pp(—xp)x X Xyuv
b = ¢’ (ad)
X = ¢ = Ippmx x xyuv:pmx x,yyuv
d = Jgic(a’$)
end of compound e = Ad:b(dg)
end of P; P = e(dpmxx,xp:pm)
w:=v:=3; f=iduv:¢3 3
u:=P(,ut+1) + u; g = Muv:PQe, o, cQ(+ul)uv
&,° = Appmx x xyuv:pdmx X vyuv
%® = Appmx X Xyuv:phmx.x xyux
h = A¢muv:¢(+mu)
k= g5 (hg)
end m = A¢: flk(Auv:$))QR

{program} = miL

The environment of the statements in the procedure above consists of eight variables:
the return variable p, the procedure value variable =, the three variables x,, x,, and x for
the called-by-name parameter x, the single called-by-value parameter variable y, and
finally the two global variables u and ». Of these, the four parameter variables are effec-
tively discarded at the end of the procedure body execution by the component (Apmx,x.xy:pw)
of P above. The procedure call is represented as the compound of two statements fand g: f
computes , the procedure value, and g makes use of this in the assignment statement.

In both previous examples, the environments of the procedure declaration and the
procedure call are the same. In the general case, these environments may be different; this
is so, for example, when a procedure call takes place in a block enclosed by the block that
declares the procedure. When this happens, there arises the problem of “covering” the
local variables of the calling point whose scopes do not include the procedure declaration.
Of course, the covering must be such that the variables may be “‘uncovered” on return to the
calling point. Notice the contrast with jumps in which the variables that do not have valid
declarations at the jump label are simply discarded permanently. Covering is also needed
in specifying the formal evaluation and assignment operators for use with statements inside
a block in a procedure body, since in this case, again, the variables local to the procedure
body are invisible at the calling point.

The following example shows a way of covering the non-overlapping parts of the en-

vironment, in order to overcome the environment conflict problem. (See the explanation
below.)

Example.

begin integer x;
procedure P(y); integer y;
begin integer z;

&) = 292py.7.7:py($:2)y. Y0y
&) = Abzpy.yey:pYelP:2)Veyey

z 1= y+3; a = pzpy,y yx:(+y3)pyy.px
b = Ad:e/(ag)
end of block ¢ = Ap:b(Az:$)Q
end of P; P = c(Apy.y.y:pD

316 S. KAMAL ABDALI

begin integer u;
P(u+x); d = Idux:P(p,u)e,"QQx
- & = APupy,yeyx:plg,u)y ye(+ux)x
end
end.

In representing the procedure call in the above example, ($,) is passed as the return
point argument instead of ¢, thus covering u. Since (¢, u)4 — Adu, for all LE’s 4, the
application of (¢, u) to any LE has the effect of uncovering u and restoring the environment;
e.g. in &, the application is made to y,, and in P, to I. Note that in the representation of
the procedure call, namely, 4, we have used & for what would otherwise have been w®;
this is so, because no assignment can be made to the particular actual parameter in this case.

The evaluation and assignment operators, both formal and actual, have been defined
above slightly differently than in the two previous examples in which covering was not
required. These two examples are worked out once again so as to make the treatment
uniform, whether or not covering is needed in a particular case.

Example.
begin integer y;

procedure P(x); integer x;
& = Appxxxipx (P)x.x.x
& = Appx,xx:pxy($)xx.x
x 1= x+2; a = Appxx xy:¢px.x(+x2)y
' b = A$ie,/(a(e,'$))
P = b(Apxxx:pl)
yi=1 ¢ = Myl
P() d= My:P($efasQy
&,° = Appxx.xy:pl()x. X)y
@,* = Appxxxy:pl(d)x.x xx

end e = Apic(d(Ay:¢)e
{program} = eIl
Example.
begin integer u, v;
integer procedure P(x,y);

integer x,y; value y:

& = Apprxx xy:px ($)ymx x Xy
;! = Appmx x xy:px ($)mx x Xy

begin
Pi=x—y; a = Appmx.x xyuv:p (—xy)xxxyuw
b = 1¢:5,(ad)
x:=y; ¢ = Mppmx X Xyuv:pux X yyuv
d = J¢:c(x’$)
end of compound e = Ad:b(dp)
end of P; P = e(Apwxx xy:plm)
U =3 f=2Aduv:¢33
u 1= P(v,u+1)+tu; g = Aduv:P($)QRe 2,2 Q(+ul)uv

- g = Apprx xxyuv: pl(ymx x oyuv
@,® = Appmxx xyuv: pl($)mx x xyux

mct

A lambda-calculus model of programming languages—II 317

h = Admruv:(+mu)o

k = id:g(hd)
end 1 = 2¢: flk(Auv:$))QRQ
{program} = /1.

A procedure body may contain a procedure call, possibly a recursive one, in which the
formal parameters are used in actual parameter expressions. And the parameters of the
nested call may themselves by called be name. The representation in such a case requires
the covering of all the variables associated with the procedure body, including the local
variables, the return variable, and the parameter variables. This is illustrated below.

Example.

begin infeger x;
procedure P(y,n); integer y,n; value n;
begin
end P;
procedure Q(z); integer z;
begin integer w;
P(z,x);

end 0;

end.

If the representation of the body of the procedure P is a, then the representation of P
itself is
P = a(lpy.y.yn:pl).
The representation of the statement P(z, x)is

Ag:e(b¢),
where ¢,/ is the formal evaluation operator for z in Q, and b represents the call on P, as
follows:

b = Adwpzzzx:P($,w,p,2,,2,,2)e,°a, *Qxx
& = Apwpz2, 20,7, yx: p(W.p,2,. 70 2P, Y
«’y = APwpz,z,2p,,y, yx: Pl($.W,p,2,,2,,)7, 7. .

The next example illustrates the representation of a procedure calling statement in which
an actual parameter itself consists of a call on a procedure.
Example.

begin integer x;
procedure P(r,s); integer r,s; begin...end P;
procedure Q(7); integer 7; begin. .. end 0;
begin integer y;
e 3 P, 000); . .
end
end.

318 S. KAMAL ABDALL

Because the second actual parameter, Q(y), in the above procedure calling statement

P(x, O(y)) does not require an assignment operator, the latter statement is represented by
the LE

Apyx:P(¢,p)e,°x, Qe 2QQx.

The first actual parameter, x, poses no problem, other than the covering of the variable y
not visible to the procedure declaration of P; hence, we define

&,% = AQYProrars,s,sx:pl{p,y)rr xs,s,5x,
0,2 = Abyprrarss el pirrors s

For the second actual parameter, Q(y), things are slightly more complex. (Note,
however, that only an evaluation operator is needed in this case; the assignment operator
is undefined.) First, we have to provide for a call on Q—which requires covering all the
variables associated with the call on P—with the following actual evaluation and assignment
operators:

e = APypr r rs s,spymt ttx:pX(d,y, PoT ool asF535: ST L X
m‘G = Z¢ypr8rarsﬂs¢splwr8r¢rx:PII<¢,r’P’rl’r¢3r’sl’sﬁis>ﬂtsr¢tx'

Now, &, is defined in terms of a call on Q, followed by an assignment of the resulting value
to s, as follows:

A = APYProrors, S Sx: 0PV, 0, ool uol 15¢s50,S)RE L, CQx,
b = Agypror.rss.smx:pl($,p)rr.rss.nx,
&2 = Ap:a(bd).

5.4. Label parameters

The representation of label parameters is actually much simpler than of the integer
parameters. The reason is that two different operations, evaluation and assignments, are
possible with the latter type; in addition, the value of the parameter at any time has to be
carried also along within the representation. In the case of a label parameter, the only
possible actual operation is a jump to it. Thus, with each formal label parameter, p, we
need to associate only one variable, denoted by p,, which is to be bound to the operator for
effecting the actual goto operation. (The variable p, is, of course, an element of the en-
vironment of the procedure body.) Next, associated with each actual label parameter, and
individual to each procedure call, is an LE that represents the parameter procedure to
effect the jump to the actual label. For a parameter p, this “actual goto” operator is
denoted by y,°, with further distinguishing marks added when more than one procedure call
isinvolved. Last, associated with each formal label parameter, and unique to each environ-
ment within the procedure body, is an LE, the “formal goto” operator, that represents a
call on the actual parameter procedure, that is, an application of the actual goto operator;
the formal goto operator for the parameter p is denoted y,7, again with further distinguishing
marks added if more than one environment is involved.

In conjunction with our detailed treatment of jumps (Section 4.3) and procedures with

integer parameters (Section 5.3), the example below should suffice to explain how to
represent label parameters.

T As explained earlier, an assignment operator is required for those actual parameters which consist of a
single program variable.

A lambda-calculus model of programming languages—II 319

Example.
begin integer g;
procedure R(v); label v;
goto v; a =y, = igpv,:pv,($)v,
R = a(4pv,:pl)
begin integer r;

procedure P(x,z); integer x; label z;
& = Adpxxoxz,: px ($)x X xz,
&) = Appx,x.x2,: px(P)x X X2,
Vi = Mppxx.xz, pz.($)x X xz,
R(z); b = Appx.x.xz,rq:
‘R<¢ ’P’xsixd’x-’zﬂ"r>?vaq

Vot = Apxxxz,rpiv,q 1y, dpx x.xz,rg
begin integer s,¢;

P(t,L) ¢ = Apstrq:P(p,s,1)e, % * Ry °rq
& = Astpxx xz,rq:
PI$.s,t)x.x,tz,rq
@, = Apstpx,x xzrq:
PI($.s,x)x.X,x2,rq
¥.® = AMstpx,x,xz,rq:Lrq
end;
5L
end

end.

6. CONCLUSION

By interpreting programming language constructs intuitively as functions rather than
machine commands, we have succeeded in modelling programming languages in the pure
lambda-calculus. An immediate application of our model is in a functional (as opposed to
computational) semantic definition of high-level programming languages, as the lambda-
calculus interpretations of the individual programming constructs can themselves be taken
as the semantic specification of the constructs. Of more interest, however, is the potential
of the present model in studying the properties of programs—such as, convergence, correct-
ness, and equivalence—and in performing useful program transformations—such as
program simplification (source code level) and optimization (compiled code level). Since
we describe a program as a lambda-expression, the above described applications essentially
reduce to transformations within the lambda-calculus. The possibilities of some of these
applications have been indicated by examples in the body of the paper. In the case of
loop-free programs, these applications most often involve straightforward lambda-calculus
reduction. For the programs containing loops, our proofs of correctness and equivalence

are rather ad hoc; the development of systematic methods to deal with these applications
warrants further research.

REFERENCES

1. J. H. Morris, Lambda-calculus models of programming languages, Ph.D. Dissertation, Project MAC,
MIT, MAC-TR-57 (1968).

2. B. K. Rosen, Tree-manipulating systems and Church-Rosser theorems, J. ACM 20, 160 (1973).

320 S. KAMAL ABDALI

- W. deBakker, Recursive Procedures, Mathematical Center, Amsterdam (1972).

- C. Kleene, Introduction to Metamathematics, van Nostrand, Princeton, NJ (1950).

- Scott, Continuous lattices, in Proc. 1971 Dalhousie Conf., Springer-Verlag Lecture Notes in Maths
274, Springer, Berlin (1972).

- Naur (Ed.) Revised Report on the algorithmic language ALGOL 60, Comm. ACM 6, 1 (1963).

- Randell and L. J. Russel, ALGOL 60 Implementation, Academic Press, NY (1964).

(7=

MR U

3
4.
5.
6.
i

=]

