
Solving Linear Systems on Linear Processor Arrays

Using a ∗-Semiring Based Algorithm

K.N. Balasubramanya Murthy & Srinivas Aluru∗

Department of Computer Science

New Mexico State University

Las Cruces, New Mexico, USA

email: {balu, aluru}@cs.nmsu.edu

S. Kamal Abdali

National Science Foundation

Arlington, VA, USA

email: kabdali@nsf.gov

Abstract

∗-semirings are algebraic structures that provide a unified approach to solve several problem

classes in computer science and operations research. Matrix computations over ∗-semirings are

interesting because of their potential applications to linear algebra. In this paper, we present

a parallel algorithm for solving systems of linear equations on ∗-semirings using linear arrays.

Most of the work in solving systems of linear equations assumes the elements are drawn from

a field. As fields can be treated as ∗-simirings, our algorithm can be used to solve linear equa-

tions on fields as well. Interestingly, this approach results in a faster algorithm than the known

parallel algorithms for this problem on fields using linear arrays. We also present a partitioning

technique for solving a problem of larger size on an array of smaller size.

Key Words: Linear equations, ∗-semirings, eliminants, asterates, parallel computers, parallel

algorithm, linear arrays.

1 Introduction

The problem of solving linear equations is common to many scientific and engineering applications.

The fundamental problem of the designer of algorithms, for the solution of linear equations, has

been to devise means for reducing the solution time. The basic problem in the solution of linear

equations is to determine the unknown solution vector, x, in the equation Ax = b (where A is a

real non-singular matrix of order N and b is a known right hand side vector). There are mainly

two classes of methods for solving Ax = b, namely iterative and direct (it is also possible to have

methods that have the features of both). Iterative methods employ a starting solution and converge

to a value that is close to the exact solution by iteratively refining the starting solution. However,

iterative methods do not guarantee a solution for all systems of linear equations and they are

more frequently used for solving large sparse systems of linear equations. On the other hand,

∗Research supported by NSF CAREER award under CCR-9702991

1

direct methods are those in which for a given linear system of equations, exact solutions (within a

round-off bound determined by machine precision) can be obtained with a pre-estimated number

of arithmetic operations. The central idea of direct methods of solving linear equations is:

1. either to find the inverse of A and then compute x = A−1b. The method based on ∗-semirings

uses this concept without explicitly finding A−1 (but computes A−1b implicitly).

2. or to transform the coefficient matrix, A, into an equivalent triangular or diagonal form in

which coupling between the unknowns is reduced. The methods based on Gaussian Elim-

ination, LU decomposition, Givens rotations, and Householder reductions use the concept

of converting the coefficient matrix A into an equivalent triangular form and then solve the

resulting triangular system of linear equations. On the other hand, the methods based on

Gauss-Jordan, Cramer’s Rule, and Bidirectional Gaussian Elimination convert the given co-

efficient matrix A into diagonal form and then obtain the solution vector x through divisions.

There is a large amount of literature on parallel numerical algebra in the form of books and research

papers [4, 8, 10, 11, 14, 18, 24, 25, 27]. Much of the large body of literature that deals with parallel

linear system solvers focuses only on the parallelization of the sequential methods and to devise

efficient strategies for scheduling coarse, medium, or fine grain tasks in them onto the processors in

a parallel computer system. In [1, 7, 21, 26, 27], parallel algorithms based on Gaussian elimination,

Gauss-Jordan, LU decomposition, Cholesky factorization, and Givens rotations for solving dense

linear systems are discussed. In these papers, attempts have been made to improve the performance

of the algorithms on different parallel computer architectures by using strategies such as pipelining,

load balancing, subcube matrix decomposition, recursive matrix duplication, and vector segmen-

tation. An overlaying technique (which is closely related to the idea of iterative refinement) has

been proposed in [3] for solving linear equations in real-time computing. This technique utilizes an

approximation of an inverse matrix as a sum of matrix products which allows the required solution

to be obtained in O(N2) rather than in O(N3) operations.

Dongarra and others [9] discuss implementations of various forms of the QR factorization on

Deneclor HEP. The authors have taken three algorithms, namely, Householder method based on

high level modules, a windowed Householder method that avoids fork-join synchronization, and

pipelined Givens method for their study, and concluded that pipelined Givens method is preferred

as it involves fewer array references [9]. Nash and Hansen described an array with 3N2

2 processors

taking 5N time steps for solving the problem using the Faddeeva algorithm in [23]. The overall

perspective of parallel algorithms for solving dense, band, or block-structured problems arising in

major areas of direct solution of linear systems, least square computations, eigenvalue and singular

value computations, and rapid elliptic solvers have been provided in [10]. More emphasis has been

given in this paper to certain computational primitives whose efficient execution on parallel and

2

Year Author(s) Processors Time steps Remarks

1990 Benaini & Robert [2] n − 1 n2 + n − 1 Triangularization

GE Algorithm with

no pivoting

1992 Wyrzykoski [28] n n2 + 2n − 3 Triangularization

GE Algorithm

with partial pivoting

1995 Wyrzykoski n+2
2 2n(n + 1) Complete Solution

& others [29] GJ Algorithm

with partial pivoting

1998 This Design n n2+5n−4
2 Complete Solution

∗-semirings

based Algorithm

Table 1: Comparison of various algorithms using O(n) processors to solve a system of n linear

equations.

vector computers is essential to obtain high performance algorithms.

It is well known that the performance of a parallel algorithm depends on the architecture of the

multiprocessor on which it is implemented. It is possible that good parallel numerical algorithms

may be obtained by viewing the algebraic problem afresh and developing methods which not only

expose the available concurrency but also break the existing sequentiality in the solution procedure.

Such an attempt is made in [16] which describes a ∗-semiring based algorithm using eliminants for

solving the given set of linear equations on the PRAM model. In this paper, we discuss the imple-

mentation of this algorithm on a linear array of processors and its problem partitioning capabilities.

A comparison of the various schemes that use O(n) processors is given in Table 1.

The rest of the paper is organized as follows. In the next section, we discuss the basics of ∗-semirings

along with the algorithm using eliminants for solving linear equations. The implementation of the

algorithm on linear arrays and a problem partitioning technique to solve a problems of larger size

on an array of smaller size are given in section 3. Lastly, section 4 gives our conclusions.

2 Solution of Linear Algebraic Equations

In a linear system Ax = b, the value of xi (i = 1, 2, ..., N) depends on the value of xj (j = 1, 2, ..., N

and i 6= j) indicating (N − 1)th level dependency. Hence the influence of at most (N − 1) other

unknowns has to be unraveled to find the solution to one unknown.

3

2.1 ∗-Semirings and Eliminants

∗-semirings (also called closed semirings) are algebraic structures that provide a unified approach to

solve a number of problems in computer science and operations research. Examples of such problems

include finding shortest or most reliable paths in graphs, finding maximum network flows, cutset

enumeration, computing the transitive closure of binary relations, finding the regular expressions

to describe the language accepted by finite automaton, and solving linear systems of equations.

The reader is referred to [12] for a detailed bibliography on ∗-semirings.

A semiring is an algebraic structure defined as < S,+, ., 0, 1 > where S is a set, + and . are

operators, and 0 and 1 are identity elements for + and ., respectively. A semiring with a unary

operation called asteration (denoted by *) is referred to as a ∗-semiring. Asteration satisfies the

law a∗ = aa∗ + 1 = a∗a + 1. The structure is closed with respect to addition and multiplication,

but may not be closed with respect to asteration. Any field can be converted into a ∗-semiring by

defining a∗ = 1/(1− a), ∀ a 6= 1. The concept of eliminant is introduced in [15] to give closed form

expressions for matrix asterates and for describing solutions of linear equations over *-semirings.

Eliminants, which are akin to Schur products for fields, are defined as follows:

elim
{

a
}

= a

elim

{

a0,0 a0,1

a1,0 a1,1

}

= a1,1 + a1,0a
∗

0,0a0,1

elim







a0,0 a0,1 a0,2

a1,0 a1,1 a1,2

a2,0 a2,1 a2,2







= elim







elim

{

a0,0 a0,1

a1,0 a1,1

}

elim

{

a0,0 a0,2

a1,0 a1,2

}

elim

{

a0,0 a0,1

a2,0 a2,1

}

elim

{

a0,0 a0,2

a2,0 a2,2

}







= elim

{

a1,1 + a1,0a
∗

0,0a0,1 a1,2 + a1,0a
∗

0,0a0,2

a2,1 + a2,0a
∗

0,0a0,1 a2,2 + a2,0a
∗

0,0a0,2

}

= (a2,2 + a2,0a
∗

0,0a0,2) + (a2,1 + a2,0a
∗

0,0a0,1)(a1,1 + a1,0a
∗

0,0a0,1)
∗(a1,2 + a1,0a

∗

0,0a0,2)

and in general

elim







a0,0 a0,1 · · · a0,n−1

a1,0 a1,1 · · · a1,n−1

...
...

...
...

an−1,0 an−1,1 · · · an−1,n−1







4

= elim







elim

{

a0,0 a0,1

a1,0 a1,1

}

· · · elim

{

a0,0 a0,n−1

a1,0 a1,n−1

}

elim

{

a0,0 a0,1

a2,0 a2,1

}

· · · elim

{

a0,0 a0,n−1

a2,0 a2,n−1

}

...
...

...

elim

{

a0,0 a0,1

an−1,0 an−1,1

}

· · · elim

{

a0,0 a0,n−1

an−1,0 an−1,n−1

}







Eliminants can be used to express solutions of simultaneous linear equations in a form that is

reminiscent of Cramer’s rule but is more compact. Consider a system of n linear equations in n

unknowns x0, x1, · · · , xn−1, given by

x0 = a0,0x0 + a0,1x1 + · · · + a0,n−1xn−1 + b0,

x1 = a1,0x0 + a1,1x1 + · · · + a1,n−1xn−1 + b1,
...

xn−1 = an−1,0x0 + an−1,1x1 + · · · + an−1,n−1xn−1 + bn−1.

It is shown in [16] that a solution of this system is given by

xi =







a0,0 . . . a0,i−1 a0,i a0,i+1 . . . a0,n−1 b0

...
...

...
...

...
...

an−1,0 . . . an−1,i−1 an−1,i an−1,i+1 . . . an−1,n−1 bn−1

0 . . . 0 1 0 . . . 0 0







, i = 0, . . . , n − 1.

2.2 Solution of Linear Equations using ∗-semirings

The above ∗-semiring solution can be adapted for linear systems over fields also, since any field can

be treated as a ∗-semiring by defining a∗ to be 1/(1 − a) for all a 6= 1. Throughout this paper,

we use systems of linear equations on real numbers (a field) as examples for illustration. Given a

system of linear equations of the form Ax = b, it can be rewritten as x = (I − A)x + b, where I

is an identity matrix. Consider a system of n linear equations in n unknowns x1, x2, · · · , xn given

below:












a0,0 a0,1 · · · a0,n−2 a0,n−1

a1,0 a1,1 · · · a1,n−2 a1,n−1

a2,0 a2,1 · · · a2,n−2 a2,n−1

...
...

...
...

...

an−1,0 an−1,1 · · · an−1,n−2 an−1,n−1

























x0

x1

x2

...

xn−1













=













b0

b1

b2

...

bn−1













Then they are rewritten in the standard form as:

5













x0

x1

x2

...

xn−1













=













1 − a0,0 −a0,1 · · · −a0,n−1 −a0,n

−a1,0 1 − a1,1 · · · −a1,n−1 −a1,n

−a2,0 −a2,1 · · · −a2,n−1 −a2,n

...
...

...
...

...

−an,0 −an,1 · · · −an,n−1 1 − an,n

























x0

x1

x2

...

xn−1













+













b0

b1

b1

...

bn−1













The solution of this system of equations is therfore given by

xi = elim







(1 − a0,0) −a0,1 · · · −a0,i · · · −a0,n−1 b0

−a1,0 (1 − a1,1) · · · −a1,i · · · −a1,n−1 b1

−a2,0 −a2,1 · · · −a2,i · · · −a2,n−1 b2

...
...

...
...

...
...

...

−an−1,0 −an−1,1 · · · −an−1,i · · · 1 − an−1,n−1 bn−1

0 0 · · · 1 · · · 0 0







We now demonstrate this method with an example of solving two linear equations.

Example:

Consider a system of two equations:

[

5 −3

3 1

] [

x0

x1

]

=

[

1

9

]

The system of equations is rewritten as:

[

x0

x1

]

=

[

−4 3

−3 0

] [

x0

x1

]

+

[

1

9

]

Hence

x0 = elim







−4 3 1

−3 0 9

1 0 0







= elim







elim

{

−4 3

−3 0

}

elim

{

−4 1

−3 9

}

elim

{

−4 3

1 0

}

elim

{

−4 1

1 0

}







= elim

{

0 + (−3)(−4)∗3 9 + (−3)(−4)∗1

0 + 1(−4)∗3 0 + 1(−4)∗1

}

= elim

{
−9
5

42
5

3
5

1
5

}

= (
1

5
) + (

3

5
)(
−9

5
)
∗

(
42

5
) = (

1

5
) + (

3

5
)(

5

14
)(

42

5
) = 2

6

x1 = elim







−4 3 1

−3 0 9

0 1 0







= elim







elim

{

−4 3

−3 0

}

elim

{

−4 1

−3 9

}

elim

{

−4 3

0 1

}

elim

{

−4 1

0 0

}







= elim

{

0 + (−3)(−4)∗3 9 + (−3)(−4)∗1

1 + 0(−4)∗3 0 + 0(−4)∗1

}

= elim

{
−9
5

42
5

1 0

}

= 0 + (1)(
−9

5
)
∗

(
42

5
) = 0 + (1)(

5

14
)(

42

5
) = 3

In order to solve a system of n linear equations in n unknowns, we need the values of n eliminants

of order n+1 each. But these n+1 eliminants share the first n rows, and differ only in the n + 1th

row. The commonality among the eliminants can be utilized to save computation by organizing

their elements in the following 2-dimensional array:

1 − a0,0 −a0,1 · · · −a0,n−1 b0

−a1,0 1 − a1,1 · · · −a1,n−1 b1

...
...

...
...

...

−an−1,0 −an−1,1 · · · 1 − an−1,n−1 bn−1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0

The eliminant computation needs to be carried out in the above formulation for n steps and at any

step k, the rows that are operated on are k, k + 1, k + 2, · · · , n + k and similarly, the columns that

are used in the computations are k, k + 1, k + 2, · · · , n. At the end of n steps, we would get the

solution vector x of n elements. The method can be described in a sequential algorithmic form as

given below (with bi’s stored as ai,n):

PROGRAM ∗-SEMIRINGS

BEGIN

(* INITIALIZATION PHASE *)

FOR i = 0 TO n − 1 DO

FOR j = 0 TO n − 1 DO

IF (i = j) THEN ai,j = 1 − ai,j

ELSE ai,j = − ai,j

FOR i = n TO 2n − 1 DO

7

(1 − a0,0)
(0) −a

(0)
0,1 −a

(0)
0,2 −a

(0)
0,3 b

(0)
0

−a
(0)
1,0 (1 − a1,1)

(0) −a
(0)
1,2 −a

(0)
1,3 b

(0)
1

−a
(0)
2,0 −a

(0)
2,1 (1 − a2,2)

(0) −a
(0)
2,3 b

(0)
2

−a
(0)
3,0 −a

(0)
3,1 −a

(0)
3,2 (1 − a3,3)

(0) b
(0)
3

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

Table 2: Progression of the ∗-semirings algorithm for solving a system of 4 equations - step 0

FOR j = 0 TO n DO

IF (i − n = j) THEN ai,j = 1

ELSE ai,j = 0

(* SOLUTION PHASE *)

FOR k = 0 TO (n − 1) DO

temp = 1/(1 − ak,k)

FOR i = k + 1 TO n + k DO

FOR j = k + 1 TO n DO

ai,j = ai,j + ai,k ∗ ak,j ∗ temp

FOR i = n TO 2n − 1 DO

xi−n = ai,n

END;

A schematic representation of the entire solution process for solving a system of 4 equations is given

in Tables 2, 3, 4, and 5. The algorithm requires n virtual time steps to produce the solution vector,

x. The total serial complexity in terms of time steps (a time step is defined as the amount of time

taken to update an element) is given by:

T (n, 1) =
n−1∑

k=0

{n(n − k)} =
n3 + n2

2

where T (n, 1) represents the time complexity for solving a problem size of n on one processor. For

a system of 8 linear equations, the order in which the elements are updated using the ∗-semiring

algorithm is shown in Table 7.

2.3 Parallel Elimination Pattern in ∗-semiring Algorithm

The sequential ∗-semiring algorithm updates one element at a time to reduce the system Ax = b

to A−1b form. This requires a total of n3+n2

2 time steps to produce the complete solution. In this

8

a
(1)
1,1 a

(1)
1,2 a

(1)
1,3 b

(1)
1

a
(1)
2,1 a

(1)
2,2 a

(1)
2,3 b

(1)
2

a
(1)
3,1 a

(1)
3,2 a

(1)
3,3 b

(1)
3

a
(1)
4,1 a

(1)
4,2 a

(1)
4,3 b

(1)
4

1 0 0 0

0 1 0 0

0 0 1 0

Table 3: Progression of the ∗-semirings algorithm for solving a system of 4 equations - step 1

a
(2)
2,2 a

(2)
2,3 b

(2)
2

a
(2)
3,2 a

(2)
3,3 b

(2)
3

a
(2)
4,2 a

(2)
4,3 b

(2)
4

a
(2)
5,2 a

(2)
5,3 b

(2)
5

1 0 0

0 1 0

Table 4: Progression of the ∗-semiring algorithm for solving a system of 4 equations - step 2

a
(3)
3,3 b

(3)
3

a
(3)
4,3 b

(3)
4

a
(3)
5,3 b

(3)
5

a
(3)
6,3 b

(3)
6

1 0

Table 5: Progression of the ∗-semiring algorithm for solving a system of 4 equations - step 3

b
(4)
4 (x0)

b
(4)
5 (x1)

b
(4)
6 (x2)

b
(4)
7 (x3)

Table 6: Solution vector obtained after solving a system of 4 equations - step 4

9

1

9 65

17 72 121

25 79 127 169

33 86 133 174 209

41 93 139 179 213 241

49 100 145 184 217 244 265

57 107 151 189 221 247 267 281 (x0)

114 157 194 225 250 269 282 (x1)

163 199 229 253 271 283 (x2)

204 233 256 273 284 (x3)

237 259 275 285 (x4)

262 277 286 (x5)

279 287 (x6)

288 (x7)

Table 7: Sequential pattern of updating elements in the ∗-semiring algorithm (the numbers indicate

the time step at which the element is updated)

10

1

2 10

3 11 18

4 12 19 25

5 13 20 26 31

6 14 21 27 32 36

7 15 22 28 33 37 40

8 16 23 29 34 38 41 43 (x0)

17 24 30 35 39 42 44 (x1)

25 31 36 40 43 45 (x2)

32 37 41 44 46 (x3)

38 42 45 47 (x4)

43 46 48 (x5)

47 49 (x6)

50 (x7)

Table 8: Parallel pattern of updating elements in the ∗-semiring algorithm (the numbers indicate

the time step at which the element is updated)

algorithm, n rows with n − k + 1 elements in each row are updated at any step k. If we employ a

linear array of n processors with pipelined updating, it is possible to obtain the complete solution

in n2+5n−4
2 time steps. Table 8 shows the parallel update pattern for a system of 8 linear equations.

3 ∗-semiring Based Algorithm on a Linear Array

A key issues in parallel computing is efficient task partitioning and scheduling: one first identifies

a suitable task granularity (a measure of the amount of computation involved) of the problem, and

then applies a scheduling method to allocate the computational tasks of a parallel program (or

algorithm) onto the available processors in a multiprocessor system such that the completion time

(or schedule length or makespan or program execution time) is minimized. The standard task size

mostly depends on the computation and communication capabilities of the multiprocessor used for

executing the task system without violating the precedence constraints.

Table 8 illustrates that the algorithm has a systematic update pattern. The update of elements

requires operations to be performed on adjacent rows. Therefore, an architecture with neighbor

processor communication, such as linear array or mesh, is sufficient to implement the algorithm in

11

step p0 p1 p2 p3 p4 p5 p6 p7

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9

2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,10

3 3,4 3,5 3,6 3,7 3,8 3,9 3,10 3,11

4 4,5 4,6 4,7 4,8 4,9 4,10 4,11 4,12

5 5,6 5,7 5,8 5,9 5,10 5,11 5,12 5,13

6 6,7 6,8 6,9 6,10 6,11 6,12 6,13 6,14

7 7,8 7,9 7,10 7,11 7,12 7,13 7,14 7,15

Table 9: The rows that are operated upon by the various processors during the progression of the

∗-semiring based algorithm for solving a system of 8 equations on 8 processors

parallel.

Consider a linear array of n processors to solve a system of n linear algebraic equations using the

∗-semiring based algorithm. Let us assume that the processors (fitted with communication co-

processors) in the linear array are connected by bidirectional links for parallel data transfer. Since

the algorithm operates on rows, the ideal choice would be to allocate one row of the linear system

per processor. To begin with, processor pi for i = 0, 1, · · · , n−1 is allocated row i and the algorithm

progression takes place in n steps. Initial allocation of rows for solving a system of 8 equations on

a linear array of 8 processors is shown in Figure 1. At any step k for k = 0, 1, · · · , n− 1, processor i

sends data to and receives data from the processor i + 1 in a pipelined manner (to be more precise

n−k+1 elements are sent and received at each step k). However, processor n−1 generates data in

a systolic fashion row-wise. The rows generated by processor n− 1 are n, n + 1, · · · , 2n− 1. At the

end of the algorithmic progression, processor pi will have the solution of the unknown xi. Table 9

indicates the rows that are operated upon by the processors at the various steps of the algorithm

progression.

The total parallel completion time for solving a system of n equations using the ∗-semiring based

algorithm in terms of time steps can be computed as follows:

T (n, n) = n
︸︷︷︸

first column

+
n−1∑

k=1

(n − k + 2)

︸ ︷︷ ︸

rest of the columns

=
(n2 + 5n − 4)

2

where T (n, n) represents the total number of time steps required for solving n linear equations using

12

p

p

p

p

p

p

p

p

0

1

2

3

4

5

6

7

row0

row1

row2

 row3

row4

row5

row6

row7

row8

row9

row10

 row11

row12

row13

row14

row15

b-vector

GIVEN LINEAR

SYSTEM

APPENDED

SYSTEM

Figure 1: Allocation of rows to processors for solving a system

of 8 linear equations

13

the ∗-semiring based algorithm on a linear array of n processors. We can easily conclude that the

∗-semiring algorithm is faster than the existing algorithm assuming the linear array architecture

permits overlapping computation and communication.

3.1 A Problem Partitioning Technique

The linear array design presented in the previous section requires an array of n processors to solve

linear equations of size n or less. In this section, we present a problem partitioning scheme using

which a given linear array can handle problems of any size. The basic idea here is to divide the

problem into a number of blocks such that the number of blocks equals the number of processors

in the linear array. This way each block can be mapped onto one processor in the linear array and

the computation can proceed as though the size of the problem is the same as that of the hardware.

In each processor, however, one full block of problem must be executed instead of one row and this

would be done serially. Here the assumption is that the processors in the linear array are capable

of handling large amounts of data.

Let p denote the size of the linear array and n denote the size of the problem. Assume p < n and

n is a multiple of p. By dividing n by p, we get a block size of n
p
. Instead of mapping one row per

processor, we map a block of n
p

rows to each processor. With this, each processor now performs

computations on n
p

rows sequentially. This partitioning scheme is depicted in Figure 2 for solving

8 linear algebraic equations on a linear array of 4 processors.

This scheme has almost no control overhead or communication overhead as we assume that the

required data is stored in the respective processors all the time. Apart from the initial mapping of

the n rows to p processors, this scheme has no other subsequent mappings or unmappings. This

scheme supports any problem size without requiring any fundamental change in the flow of data or

additional overheads.

4 Conclusions

In this paper, we presented a parallel algorithm for solving systems of linear equations on ∗-

semirings using linear arrays. Since most applications of solving systems of linear equations involve

elements drawn from fields, much of the work has focussed in this area. Our results demonstrate

that faster algorithms can be obtained by considering ∗-semirings and treating fields as special cases

of ∗-semirings. It is important to study the numerical stability of the ∗-semirings based approach,

especially in comparison to the numerical stability characteristics of the algorithms for fields. We

are currently exploring this issue.

14

p

p

p

p

b-vector

0

1

2

3

Figure 2: Solving a system 8 equations on an array of 4 processors using the

∗-semiring based algorithm

15

References

[1] K.N. Balasubramanya Murthy, K.Bhuvaneswari, and C. Siva Ram Murthy, “A new algorithm

based on Givens rotations for solving linear equations on fault tolerant mesh-connected

processors”, IEEE Transactions on Parallel and Distributed Systems, vol.9, No.8, August

1998, pp.825-832.

[2] A. Benaini and Y. Robert, “A modular systolic linear array for Gaussian elimination”, In-

ternational Journal of Computer Mathematics, vol. 36, 1990, pp. 105-118.

[3] S. Y. Berkovich, “An overlaying technique for solving linear equations in real-time comput-

ing”, IEEE Transactions on Computers, vol. 42, no. 5, May 1993, pp. 513-517.

[4] D.P.Bertsekas and J.N.Tsitsiklis, Parallel and Distributed Computations - Numerical Meth-

ods, Prentice Hall Inc., New Jersey, 1989.

[5] A. Bojanczyk, R. P. Brent, and H. T. Kung, “Numerically stable solution of dense sys-

tems of linear equations using mesh-connected processors”, SIAM Journal on Scientific and

Statistical Computing, vol. 5, no. 1, March 1984, pp. 95-104.

[6] K. Bhuvaneswari, K. N. Balasubramanya Murthy and C. Siva Ram Murthy, “A new and

faster Gaussian elimination based fault tolerant systolic linear system solver”, Journal of

Parallel and Distributed Computing, vol. 44, 1997, pp. 107-122.

[7] M.Cosnard, M.Tchuente, and B.Tourancheau, “Systolic Gauss- Jordan elimination for dense

linear systems”, Parallel Computing, vol.10, 1989, pp.117-122.

[8] J.W.Demmel, M.T.Heath, and H.A. Van der Vorst,“Parallel numerical algebra”, Acta Nu-

merica, 1993, pp.111-197.

[9] J.J.Dongarra, A.Sameh, and D.C.Sorenson, “Implementation of some concurrent algorithms

for matrix factorization”, Parallel Computing, vol.3, 1986, pp.25-34.

[10] K.Gallivan, R.J.Plemmons, and A.H.Sameh, “Parallel algorithms for dense linear algebra

computations”, SIAM Review, vol.32, no.1, March 1990, pp.54-135.

[11] G.Golub and C.Van Loan, Matrix Computations, John Hopkins University Press, Baltimore,

Maryland, 1989.

[12] M.Gondran and M.Minoux, Graphs and Algorithms, Wiley, New York, 1984.

[13] M.T.Heath and C.H.Romine, “Parallel solution of triangular systems on distributed-memory

multiprocessors”, SIAM Journal on Scientific and Statistical Computing, vol.9, no.3, May

1988, pp.558-587.

16

[14] D.Heller, “A survey of parallel algorithms in numerical linear algebra”, SIAM Review, vol.20,

no.4, October 1978, pp.740-777.

[15] S. Kamal Abdali and B.D.Saunders, “Transitive closure and related semiring properties via

eliminants”, Theoretical Computer Science, vol.40, 1985, pp.257-274.

[16] S. Kamal Abdali, “Parallel computations in ∗-semirings”, in Computational Algebra,

K.G. Fischer, P. Loustaunau, et. al. (eds.), Marcel Dekker, New York, 1994.

[17] T. Kimura, “Gauss-Jordan elimination by VLSI mesh-connected processors”, Infotech State

of the Art Report: Supercomputers, (Josshope, C. and Hockney, R. eds.), Vol.2 (InfoTech,

Maidenhead, United Kingdom, 1979), pp. 271-290.

[18] S.Lakshmivarahan and S.K.Dhall, Analysis and Design of Parallel Algorithms - Arithmetic

and Matrix Problems, McGraw-Hill Publishing Company, New York, 1990.

[19] G.Li and T.F.Coleman, “A parallel triangular solver for a distributed-memory multiproces-

sor”, SIAM Journal on Scientific and Statistical Computing, vol.9, no.3, May 1988, pp.485-

502.

[20] C.J.Lin, “Systolic algorithm for the solution of dense linear equations”, International Journal

of Computer Mathematics, vol.35, 1990, pp.159-167.

[21] R.Melhem, “Parallel Gauss-Jordan elimination for solution of dense linear equations”, Par-

allel Computing, vol.4, 1987, pp.339-343.

[22] R.K.Montoye and D.H.Lawrie, “A practical algorithm for solution of triangular systems on

a parallel processing system”, IEEE Transactions on Computers, vol.31, no.11, November

1982, pp.1076-1082.

[23] J.G.Nash and S.Hansen, “Modified Faddeeva algorithm for concurrent execution of linear

algebraic equations”, IEEE Transactions on computers, vol.37, no.2, February 1988, pp.129-

136.

[24] J.M.Ortega and R.G.Voigt, “Solution of partial differential equations on vector and parallel

computers”, SIAM Review, vol.27, no.2, June 1985, pp.149-240.

[25] A. H. Sameh and D. J. Kuck, “Parallel direct linear system solvers - A survey”, Parallel

Computers - Parallel Mathematics, M. Feilmeier (ed.), North-Holland, Amsterdam, The

Netherlands, 1977, pp. 25-30.

[26] Shietung Peng and Stanislav Sedukhin, “Array processors design for division-free linear sys-

tem solving”, The Computer Journal, vol. 39, no. 8, 1996, pp. 713-722.

17

[27] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis, Introduction to Parallel

Computing - Design and Analysis of Algorithms, Benjamin/Cummings Publishing Company,

1994.

[28] R. Wyrzykowski, “Processor arrays for matrix triangularization with partial pivoting”, IEE

Proc. (part E - Computers and Digital Techniques), vol. 139, no. 2, March 1992, pp. 165-169.

[29] R. Wyrzykowski, J. S. Kanevski, and H. Piech, “One-dimensional processor arrays for linear

algebraic problems”, IEE Proc. (part E - Computers and Digital Techniques), vol. 142, no. 1,

January 1995, pp. 1-4.

18

